Development of a quantitative proteomics approach for cyclooxygenases and lipoxygenases in parallel to quantitative oxylipin analysis allowing the comprehensive investigation of the arachidonic acid cascade

Nicole M. Hartung ${ }^{1} \cdot$ Malwina Mainka $^{1} \cdot$ Rebecca Pfaff $^{1} \cdot$ Michael Kuhn $^{1} \cdot$ Sebastian Biernacki $^{1} \cdot$ Lilli Zinnert 1. Nils Helge Schebb ${ }^{1}{ }^{1}$

Received: 18 July 2022 / Revised: 7 December 2022 / Accepted: 14 December 2022 / Published online: 23 January 2023
© The Author(s) 2023

Abstract

Oxylipins derived from the cyclooxygenase (COX) and lipoxygenase (LOX) pathways of the arachidonic acid (ARA) cascade are essential for the regulation of the inflammatory response and many other physiological functions. Comprehensive analytical methods comprised of oxylipin and protein abundance analysis are required to fully understand mechanisms leading to changes within these pathways. Here, we describe the development of a quantitative multi-omics approach combining liquid chromatography tandem mass spectrometry-based targeted oxylipin metabolomics and proteomics. As the first targeted proteomics method to cover these pathways, it enables the quantitative analysis of all human COX (COX-1 and COX-2) and relevant LOX pathway enzymes (5-LOX, 12-LOX, 15-LOX, 15-LOX-2, and FLAP) in parallel to the analysis of 239 oxylipins with our targeted oxylipin metabolomics method from a single sample. The detailed comparison between MRM ${ }^{3}$ and classical MRM-based detection in proteomics showed increased selectivity for MRM ${ }^{3}$, while MRM performed better in terms of sensitivity (LLOQ, $16-122 \mathrm{pM}$ vs. $75-840 \mathrm{pM}$ for the same peptides), linear range (up to $1.5-7.4 \mu \mathrm{M}$ vs. $4-368 \mathrm{nM}$), and multiplexing capacities. Thus, the MRM mode was more favorable for this pathway analysis. With this sensitive multiomics approach, we comprehensively characterized oxylipin and protein patterns in the human monocytic cell line THP-1 and differently polarized primary macrophages. Finally, the quantification of changes in protein and oxylipin levels induced by lipopolysaccharide stimulation and pharmaceutical treatment demonstrates its usefulness to study molecular modes of action involved in the modulation of the ARA cascade.

Keywords Targeted proteomics • Targeted oxylipin metabolomics • Arachidonic acid cascade • Liquid chromatography tandem mass spectrometry • Multiple reaction monitoring cubed • Human macrophages

Abbreviations

aa	Amino acid
ALOX5	Gene of the 5-lipoxgenase enzyme (5-LOX)
ARA	Arachidonic acid
CAD	Collisionally activated dissociation
CE	Collision energy
COX	Cyclooxygenase
CSF	Colony-stimulating factors
CXP	Collision cell exit potential

[^0]| DFT | Dynamic fill time |
| :--- | :--- |
| DP | Declustering potential |
| EP | Entrance potential |
| FFT | Fixed fill time |
| FLAP | Five-lipoxygenase-activating protein |
| FWHM | Full width at half maximum |
| GM-CSF | Granulocyte-macrophage colony-stimulating

 factor |
| HETE | Hydroxyeicosatetraenoic acid |
| HHT | Hydroxyheptadecatrienoic acid |
| IFN γ | Interferon γ |
| IL-4 | Interleukin 4 |
| IS | Internal standard |
| LC | Liquid chromatography |
| LIT | Linear ion trap |

LLOQ	Lower limit of quantification
LOD	Limit of detection
LOX	Lipoxygenase
LPS	Lipopolysaccharide
LT	Leukotriene
M-CSF	Macrophage colony-stimulating factor
MRM	Multiple reaction monitoring
MRM ${ }^{3}$	Multiple reaction monitoring cubed
MS	Mass spectrometry
PBMC	Peripheral blood monocytic cells
PBS	Phosphate buffered saline
PG	Prostaglandin
PTGS1/2	Genes of the prostaglandin G/H synthase 1/2
	enzymes (COX-1 and COX-2)
P/S	Penicillin/streptomycin
TGF- $\beta 1$	Transforming growth factor- $\beta 1$
TRIS	Tris(hydroxymethyl)aminomethane
VD 3	$1,25-$ Dihydroxyvitamin D_{3}

Introduction

The cyclooxygenase (COX) and lipoxygenase (LOX) pathways of the arachidonic acid (ARA) cascade play important roles in inflammation (simplified overview in Fig. 1). The formed eicosanoids and other oxylipins are potent lipid mediators of the immune response [1]. Through the initial oxidation of polyunsaturated fatty acids, such as ARA, via one of the two COX enzymes, the unstable prostaglandin (PG) H_{2} is formed and can be further converted by downstream enzymatic or non-enzymatic reactions, e.g., to PGE_{2} or 12-hydroxy-heptadecatrienoic acid (12-HHT) [2, 3]. Formed in immune cells, PGE_{2} acts as a pro-inflammatory signaling molecule by, e.g., stimulating the upregulation of pro-inflammatory cytokines or enhancing blood flow through augmented atrial vasodilation [4, 5]. Increased PGE_{2} levels are often associated with upregulated COX-2 (derived from the PTGS2 gene) abundance that is induced by pro-inflammatory stimuli such as gram-negative bacteria [5]. Though biological functions of $12-\mathrm{HHT}$ are not yet fully understood, recent studies have found this oxylipin to be involved i.a. in the mediation of allergic inflammation [6]. As chemical breakdown product of PGH_{2}, it is an established marker of COX activity [7]. The several LOX isoforms catalyze the stereo- and regiospecific formation of hydroperoxy fatty acids as primary products that are - in the cell - rapidly reduced to hydroxy fatty acids, e.g., hydroxyeicosatetraenoic acids (HETE) formed from ARA [8]. The LOX branch of the ARA cascade is also involved in inflammation regulation. 5-LOX catalyzes the formation of proinflammatory and chemotactic leukotrienes (LT), such as ARA-derived LTB_{4}. The multiple hydroxylated fatty acids
formed via consecutive LOX activity are believed to elicit anti-inflammatory properties involved in the active resolution of inflammation [8, 9] but remain controversially discussed [10]. The multitude of products arising from the many ARA cascade enzymes, crosstalk between the different branches, and various structurally distinct fatty acid substrates make a comprehensive oxylipin metabolomics platform necessary for thorough investigation of the oxylipin pattern. However, in order to fully comprehend the mechanisms leading to changes on metabolite levels, the additional investigation of gene expression, i.e., protein abundance, is indispensable.

In the recent years, interest in multi-omics techniques as tools to achieve systemic understanding of biological changes has drastically increased, i.e., metabolomics, proteomics, and transcriptomics [11, 12]. While liquid chromatography (LC) tandem mass spectrometry (MS/MS) is the standard method for quantitative targeted oxylipin analysis [13], the LC-MS/MS-based analysis of proteins has emerged in the recent years and is often conducted as high-throughput screenings allowing only relative quantification. Though the investigation of ARA cascade enzymes with proteomic tools has been reported [14-18], also in combination with metabolomics analyses [19, 20], a method for its quantitative analysis has not yet been described. Therefore, it was our goal to develop a targeted proteomics method comprising the important COX- and LOX-mediated signaling pathways and, together with our existing targeted oxylipin metabolomics platform [21-23], establishing a comprehensive and quantitative multi-omics tool to thoroughly investigate the ARA cascade.

Our targeted proteomics approach allows the analysis of human COX and LOX enzymes for the first time in a quantitative manner and, together with our oxylipin metabolomics method, is a valuable tool to characterize the ARA cascade from a single sample. This is demonstrated by characterizing the COX and LOX pathways in different human immune cells, showing correlations between oxylipin and protein abundances as well as quantitative changes upon pharmacological intervention.

Materials and methods

Chemicals and biological material

Fetal calf serum (superior standardized) was purchased from Biochrom (Berlin, Germany); 1,25-dihydroxyvitamin $\mathrm{D}_{3}\left(\mathrm{VD}_{3}\right)$ and ML351 as well as oxylipin standards were purchased from Cayman Chemical (Ann Arbor, MI, USA; local supplier Biomol, Hamburg, Germany). HEK293 cellderived recombinant human transforming growth factor- $\beta 1$ (TGF- $\beta 1$), recombinant human colony-stimulating factors

Arachidonic Acid Cascade

Fig. 1 Simplified overview of the cyclooxygenase (COX) and lipoxygenase (LOX) branches of the arachidonic acid (ARA) cascade. COX catalyzes the formation of prostaglandin (PG) H_{2} which is further converted by downstream enzymes or non-enzymatically, e.g., to PGE_{2} by PGE synthases (PGES) or to 12-hydroxy-heptadecatrienoic acid (12-HHT) by thromboxane A synthase (TxAS). The different LOX isoforms each oxidize ARA regiospecifically to hydroperoxy-
eicosatetraenoic acids (HpETE) or leukotriene $\mathrm{A}_{4}\left(\mathrm{LTA}_{4}\right)$ in case of 5 -LOX supported by the 5-LOX-activating protein (FLAP). The primary products are reduced to their respective hydroxy eicosatetraenoic acids (HETE) by, e.g., glutathione peroxidases or rapidly hydrolyzed to LTB_{4} in case of LTA_{4} (gene names are noted under the enzyme/protein names in italic)

CSF-1 (M-CSF), CSF-2 (GM-CSF), interferon γ (IFN γ), and interleukin 4 (IL-4) produced in Escherichia coli were obtained from PeproTech Germany (Hamburg, Germany). Lymphocyte separation medium was purchased at PromoCell (Heidelberg, Germany). Human AB serum was provided by the blood donation center University Hospital Düsseldorf (Düsseldorf, Germany). Protease inhibitor mix M (AEBSF, Aprotinin, Bestatin, E-64, Leupeptin and Pepstatin A) and resazurin as well as MS approved trypsin ($>6.000 \mathrm{U} \mathrm{g}^{-1}$, from porcine pancreas) were from SERVA Electrophoresis GmbH (Heidelberg, Germany). Unlabeled AQUA peptide standards were obtained from Thermo Life Technologies GmbH (Darmstadt, Germany), unlabeled and heavy labeled (lys, uniformly labeled (U) ${ }^{13} \mathrm{C}_{6} ; \mathrm{U}-{ }^{15} \mathrm{~N}_{2}$; arg, $\mathrm{U}-{ }^{13} \mathrm{C}_{6} ; \mathrm{U}-{ }^{15} \mathrm{~N}_{4}$) peptide standards were purchased from JPT Peptides (Berlin, Germany).

Acetonitrile (HPLC-MS grade), acetone (HPLC grade), methanol, and acetic acid (both Optima LC-MS grade) were obtained from Fisher Scientific (Schwerte, Germany). Dithiothreitol was from AppliChem (Darmstadt, Germany). Tris(hydroxymethyl)aminomethane (TRIS), ammonium bicarbonate, sodium deoxycholate, and urea were obtained from Carl Roth (Karlsruhe, Germany). RPMI 1640, l-glutamine, and penicillin/streptomycin (5000 units penicillin
and 5 mg streptomycin mL^{-1}), lipopolysaccharide (LPS) from E. coli (0111:B4), dextran 500 from Leuconostoc spp., iodoacetamide, dimethylsulfoxide (DMSO), dexamethasone, indomethacin, celecoxib, and PF-4191834 as well as all other chemicals were purchased from Sigma (Schnellendorf, Germany).

Cell cultivation

THP- 1 cells were obtained from the German Collection of Microorganisms and Cell Cultures GmbH (DSMZ, Braunschweig, Germany) and were maintained in bicarbonate buffered RPMI medium supplemented with 10% fetal calf serum, $100 \mathrm{UmL}^{-1}$ penicillin, $100 \mu \mathrm{~g} \mathrm{~mL}^{-1}$ streptomycin ($\mathrm{P} / \mathrm{S}, 2 \%$) and 2 mM l-glutamine (1%) in $60.1 \mathrm{~cm}^{2}$ dishes in a humidified incubator at $37{ }^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$. For experiments, cells were seeded at densities of $0.125 \cdot 10^{6}$ cells mL^{-1} and differentiated with 50 nM VD 3 (0.1% DMSO) and $1 \mathrm{ng} \mathrm{mL}^{-1}$ TGF- $\beta 1$ for 72 h .

Primary human macrophages were prepared as described by [24]. In brief, peripheral blood monocytic cells (PBMC) were isolated from buffy coats obtained from blood donations at the University Hospital Düsseldorf. Blood samples were drawn with the informed consent of the human
subjects. The study was approved by the Ethical Committee of the University of Wuppertal. PBMC were isolated by dextran (5%) sedimentation for 45 min and subsequent centrifugation ($1000 \times g$ without deceleration, $10 \mathrm{~min}, 20^{\circ} \mathrm{C}$) on lymphocyte separation medium. The leucocyte ring was isolated and washed twice with PBS. Cells were seeded in $60.1 \mathrm{~cm}^{2}$ dishes and left to adhere for 1 h after resuspension in serum-free RPMI medium ($2 \% \mathrm{P} / \mathrm{S}, 1 \%$ L-glutamine) in a humidified incubator at $37{ }^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ (8 dishes per donor). Cells were washed, and RPMI medium ($2 \% \mathrm{P} / \mathrm{S}$, 1% l-glutamine) supplemented with 5% human AB serum was added. For polarization towards M1- or M2-like macrophages, the medium was additionally supplemented with $10 \mathrm{ng} \mathrm{mL}^{-1}$ CSF-2 or CSF-1 for 8 days and treated with $10 \mathrm{ng} \mathrm{mL}^{-1}$ IFN γ or IL-4 for the final 48 h . No cytokines were added to generate M0-like macrophages.

Platelets were isolated from EDTA blood as described by the platelet-rich plasma method [25].

Cell culture experiments

For the experiments of the THP-1 cells or primary macrophages with test compounds, cell culture medium was replaced 7 h before the end of the differentiation with serumfree 50 mM TRIS-buffered RPMI medium ($2 \% \mathrm{P} / \mathrm{S}, 1 \%$ l-glutamine) and the pharmacological inhibitors or DMSO (0.1%) as control were added. Cytotoxic effects of the test compounds at the used concentrations were excluded by resazurin (Alamar Blue) assay [26] and lactate dehydrogenase assay (ESM Figs. S4 and S5). After 1 h of preincubation, cells were additionally treated with $1 \mu \mathrm{~g} \mathrm{~mL}^{-1}$ LPS for 6 h . In case of the THP- 1 cells, all adherent and nonadherent cells were harvested by scraping in the cell culture medium. Primary macrophages were harvested by cold shock method [24]. The harvested cell pellets were frozen at $-80^{\circ} \mathrm{C}$ until use.

Quantification of oxylipin and protein levels by LCMS/MS

The presented methods allow the quantitative analysis of 239 oxylipins (ESM Table S4) and 11 proteins (Tables 1 and 2, ESM Table S7) from one cell pellet. Cells were resuspended in PBS containing 1% protease inhibitor mix and antioxidant solution $\left(0.2 \mathrm{mg} \mathrm{m}^{-1} \mathrm{~L}\right.$ BHT, $100 \mu \mathrm{M}$ indomethacin, $100 \mu \mathrm{M}$ soluble epoxide hydrolase inhibitor trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB) in MeOH) [21, 22] and sonicated, and protein content was determined via bicinchoninic acid assay [27]. Internal standards (IS) for oxylipin analysis were added to the cell lysate before proteins were precipitated in methanol at $-80^{\circ} \mathrm{C}$ for at least 30 min . The supernatant after centrifugation ($20000 \times g, 10 \mathrm{~min}, 4^{\circ} \mathrm{C}$) served as sample for
oxylipin analysis, while the protein levels were later separately analyzed in the precipitated protein pellet after storage at $-80^{\circ} \mathrm{C}$. For the oxylipin analysis, the supernatant after the protein precipitation was further purified according to the previously published method [21, 22] by solidphase extraction on a non-polar (C8)/strong anion exchange mixed mode material (Bond Elut Certify II, 200 mg , Agilent, Waldbronn, Germany) and analyzed by LC-MS/MS. For the targeted LC-MS/MS-based proteomics analysis, the protein pellet obtained after the protein precipitation was resuspended in $5 \%(w / v)$ sodium deoxycholate containing 1% protease inhibitor mix and precipitated again in four volumes of ice-cold acetone after centrifugation $(15000 \times g, 20 \mathrm{~min}$, $\left.4^{\circ} \mathrm{C}\right)$. Further steps were carried out as described by [18]. In brief, the dried protein pellet was re-dissolved in 6 M urea, the disulfide bridges were reduced with dithiothreitol, and the resulting free sulfhydryl groups were alkylated with iodoacetamide in order to inhibit the reformation of disulfide bridges. The samples were diluted with 50 mM $\mathrm{NH}_{4} \mathrm{HCO}_{3}$ before the tryptic digestion was carried out at a trypsin-to-protein ratio of 1:50. The digestion was stopped after 15 h by adding concentrated acetic acid to reduce the pH from ≈ 7.8 to 3-4. A mixture of heavy labeled peptides (lys, $\mathrm{U}-{ }^{13} \mathrm{C}_{6} ; \mathrm{U}-{ }^{15} \mathrm{~N}_{2} ; \arg , \mathrm{U}-{ }^{13} \mathrm{C}_{6} ; \mathrm{U}-{ }^{15} \mathrm{~N}_{4}$) corresponding to each of the analytes was spiked as internal standards (final vial concentrations, 25 nM for COX and LOX peptides and $50 / 100 \mathrm{nM}$ for the housekeeper peptides), before the samples were subjected to solid-phase extraction (Strata-X $33 \mu \mathrm{~m}$ Polymeric Reversed Phase, Phenomenex LTD, Aschaffenburg, Germany) and analyzed by LC-MS/MS.

The samples for the oxylipin and peptide analysis were measured with separate methods on two 1290 Infinity II LC systems, each equipped with a Zorbax Eclipse Plus C18 reversed phase column $(2.1 \times 150 \mathrm{~mm}$, particle size $1.8 \mu \mathrm{~m}$, pore size $95 \AA$, Agilent) at $40^{\circ} \mathrm{C}$, with an upstream inline filter ($3 \mu \mathrm{~m}, 1290$ infinity II inline filter, Agilent) and SecurityGuard Ultra C18 cartridge as precolumn ($2.1 \times 2 \mathrm{~mm}$). The oxylipins were separated as described by [21-23] with a gradient composed of 0.1% acetic acid mixed with 5% mobile phase B (mobile phase A) and acetonitrile/methanol/acetic acid $(800 / 150 / 1, v / v / v$; mobile phase B) at a flow rate of $0.3 \mathrm{~mL} \mathrm{~min}^{-1}: 21 \% \mathrm{~B}$ at $0 \mathrm{~min}, 21 \% \mathrm{~B}$ at 1.0 min , 26% B at $1.5 \mathrm{~min}, 51 \%$ B at $10 \mathrm{~min}, 66 \%$ B at $19 \mathrm{~min}, 98 \%$ B at $25.1 \mathrm{~min}, 98 \% \mathrm{~B}$ at $27.6 \mathrm{~min}, 21 \% \mathrm{~B}$ at 27.7 min , and 21% B at 31.5 min . The LC used for oxylipin analysis was coupled with a 5500 QTRAP mass spectrometer operated in negative electrospray ionization (ESI(-)) mode (Sciex, Darmstadt, Germany). The MS was set as follows: ion spray voltage, -4500 V ; capillary temperature, $650^{\circ} \mathrm{C}$; curtain gas $\mathrm{N}_{2}, 50 \mathrm{psi}$; nebulizer gas (GS1) $\mathrm{N}_{2}, 30 \mathrm{psi}$; drying gas (GS2) $\mathrm{N}_{2}, 70 \mathrm{psi}$; generated with N_{2} generator NGM 33 (cmc Instruments, Eschborn, Germany); and collisionally activated dissociation (CAD) gas, high. Declustering potentials (DP),
Table 1 MRM method parameters for (A) unlabeled and (B) heavy labeled (lys, $\mathrm{U}_{-}{ }^{13} \mathrm{C}_{6} ; \mathrm{U}_{-}{ }^{15} \mathrm{~N}_{2} ; \arg , \mathrm{U}_{-}{ }^{13} \mathrm{C}_{6} ; \mathrm{U}_{-}{ }^{15} \mathrm{~N}_{4}$) peptides of COX-1, COX-2, 5-LOX, FLAP, 12-LOX, 15-LOX, and 15-LOX-2 used as internal standards (IS)

(A) Gene/protein (UniProtKB No.)	Peptide	Transitions	Q1 m/z	Q3 m/z	RT [min]	Rel. ratio to quantifier [\%]	CE (V)	IS transitions	$\begin{aligned} & \text { Calibration } \\ & \text { range }[\mathrm{nM}] \end{aligned}$	LOD [pM]	LLOQ [pM]	LOD peptide on column [fg]	LOD enzyme on column $[\mathrm{pg}]$
PTGS1/cyclooxy-genase-1 (COX1; P23219)	DCPTPMGTK	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	503.7	731.4	6.92 ± 0.01		19	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	0.016-1570	7.9	16	37	2.7
		$\mathrm{M}^{2+} \rightarrow \mathrm{b}_{2}{ }^{+}$	503.7	276.1		59	20						
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	503.7	533.3		43	31						
	AEHPTWGD EQLFQTTR	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{5}{ }^{+}$	639.3	652.3	16.06 ± 0.03		26	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{5}{ }^{+}$	0.50-5000	250	500	2394	86
		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{4}{ }^{+}$	639.3	505.3		57	28						
	FDPELLFNK	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{6}{ }^{+}$	639.3	765.4		55	28						
PTGS2/cyclooxy-genase-2 (COX2; P35354)		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}^{++}$	561.8	430.7	20.44 ± 0.02		25	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{++}$	0.021-2111	4.2	21	24	1.5
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}^{+}$	561.8	860.4		36	25						
		$\mathrm{M}^{2+} \rightarrow \mathrm{b}_{2}{ }^{+}$	561.8	263.1		25	24						
	NAIMSYVLTSR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	627.8	956.3	17.81 ± 0.02		29	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	0.25-5000	100	250	627	34
		$\mathrm{M}^{2+} \rightarrow \mathrm{b}_{3}{ }^{+}$	627.8	299.1		86	27						
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{9}{ }^{+}$	627.8	1069.6		43	27						
PTGS1/COX-1 \& PTGS2/COX-2	LILIGETIK	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	500.3	773.3	18.03 ± 0.02		23	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	0.027-2660	13	27	66	4.6
		$\mathrm{M}^{2+} \rightarrow \mathrm{b}_{2}{ }^{+}$	500.3	227.2		62	22						
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	500.3	547.3		30	25						
ALOX5/5-lipoxygenase (5-LOX; P09917)	DDGLLVWEAIR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	643.8	773.4	23.38 ± 0.01		30	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	0.122-1219	49	122	313	19
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	643.8	886.5		81	28						
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	643.8	674.4		85	25						
	NLEAIVSVIAER	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	657.4	773.5	22.12 ± 0.01		28	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	0.25-5000	100	250	656	39
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{10}{ }^{+}$	657.4	1086.6		66	30						
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	657.4	886.5		43	30						
ALOX5AP/ arachidonate 5-lipoxygenaseactivating protein (FLAP; P20292)	TGTLAFER	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	447.7	635.4	11.30 ± 0.02		22	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{4}{ }^{+}$	$0.074-7366$	37	74	165	3.4
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{3}{ }^{+}$	447.7	451.2			24						
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	447.7	736.4		55	20						
	YFVGYLGER	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	552.3	793.4	16.27 ± 0.03		24	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}^{+}$	0.010-5000	5.0	10	28	0.45
		$\mathrm{M}^{2+} \rightarrow \mathrm{b}_{2}{ }^{+}$	552.3	311.1		67	24						
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	552.3	694.4		69	26						
ALOX12/12. lipoxygenase (12-LOX; P18054)	LWEIIAR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	450.8	601.4	18.51 ± 0.02		21	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	0.025-5000	10	25	45	3.8
		$\mathrm{M}^{2+} \rightarrow \mathrm{b}_{2}{ }^{+}$	450.8	300.2		32	17						
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	450.8	787.4		21	21						
	AVLNQFR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	424.2	677.4	11.07 ± 0.02		19	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	0.050-5000	25	50	106	9.5
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{4}{ }^{+}$	424.2	564.3		47	21						
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{3}{ }^{+}$	424.2	450.3		6	19						

Table 1 (continued)

Table 1 (continued)

ALOX5AP/ arachidonate 5-lipoxygenaseactivating protein FLAP; P20292)	TGTLAFER	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{4}{ }^{+}$	452.7	532.2			24
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	452.7	645.4	11.30 ± 0.02	44	22
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{3}{ }^{+}$	452.7	461.2		32	24
	YFVGYLGER	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	557.3	803.4			24
ALOX12/12Lipoxygenase (12-LOX; P18054)		$\mathrm{M}^{2+} \rightarrow \mathrm{b}_{2}{ }^{+}$	557.3	311.1	16.27 ± 0.03	66	24
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	557.3	704.4		72	26
	LWEIIAR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	455.8	797.5			21
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{4}{ }^{+}$	455.8	482.3	18.51 ± 0.02	87	21
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{3}{ }^{+}$	455.8	369.2		44	21
	AVLNQFR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	429.2	687.4			19
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{3}{ }^{+}$	429.2	460.3	11.07 ± 0.02	7	19
ALOX15/15lipoxygenase (15-LOX; P16050)		$\mathrm{M}^{2+} \rightarrow \mathrm{z}_{4}{ }^{+}$	429.2	557.3		6	28
	EITEIGLQ-	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	720.4	854.4			34
	GAQDR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	720.4	556.3	13.62 ± 0.01	39	32
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{9}{ }^{+}$	720.4	967.5		30	35
	GFPVSLQAR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}^{++}$	492.8	390.7			20
ALOX15B/15- lipoxygenase-2 (15-LOX-2; O15296)		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	492.8	584.3	14.78 ± 0.01	28	29
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	492.8	683.4		10	30
	ELLIVPGQVVDR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	674.4	780.4			30
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	674.4	879.5	18.76 ± 0.02	30	29
		$\mathrm{M}^{2+} \rightarrow \mathrm{b}_{5}^{+}$	674.4	568.4		30	24
	VSTGEAFGAGT-	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	717.3	742.4			36
	WDK	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	717.3	889.4	14.42 ± 0.02	74	36
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{12}{ }^{++}$	717.3	624.3		58	30

For each peptide, different collisionally activated dissociation fragment ions used for qualification and quantification (top) with their Q1 and Q3 m / z are shown with retention time (RT, mean \pm SD, set of $n=23$ calibrators) and relative ratios to quantifier transition as well as collision energies (CE). For unlabeled peptides (A), the linear calibration range is shown for quantifier transitions as well as the transitions of the corresponding heavy labeled peptides used as internal standards (IS) for quantification, limits of detection (LOD), lower limits of quantification (LLOQ), and LOD of the peptides and enzymes on column. Accuracy of calibrators was within a range of $\pm 15 \%$ (20% for LLOQ). The concentrations of all heavy labeled peptides (IS) in the vial are 25 nM
Table $2 \mathrm{MRM}^{3}$ method parameters for (A) unlabeled and (B) heavy labeled (lys, $\mathrm{U}^{-13} \mathrm{C}_{6} ; \mathrm{U}_{-}{ }^{15} \mathrm{~N}_{2}$; arg $\mathrm{U}-{ }^{13} \mathrm{C}_{6} ; \mathrm{U}^{-15} \mathrm{~N}_{4}$) peptides of COX-1, COX-2, 5 -LOX, FLAP, 12-LOX, 15-LOX, and 15-LOX-2 used as internal standards (IS)

(A)															
Protein	Peptide	Mode	$\begin{aligned} & \text { Transition } \\ & \quad(\mathbf{Q 1} \rightarrow \mathbf{Q} 3) \end{aligned}$	Q1 m/z	Q3 m/z	m / z of MS^{3} fragment ions summed for MRM ${ }^{3}$	Time period [min]	RT [min]	CE (V)	AF2 (V)	Calibration range [nM]	LOD [nM]	$\begin{gathered} \text { LLOQ } \\ {[\mathrm{nM}]} \end{gathered}$	LOD peptide on column [pg]	LOD enzyme on column [pg]
PPIB	IGDEDVGR	MRM	*	*	*	-	0.00-6.61	5.99 ± 0.01	*	-	*	-	-	-	-
COX-1	DCPTPMGTK	MS ${ }^{3}$	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	503.7	731.4		6.61-9.10	6.92 ± 0.01	19	0.08	0.079-31	0.031	0.079	0.15	11
FLAP	TGTLAFER	MS ${ }^{3}$	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	447.7	635.4	$\begin{aligned} & 617.3\left(\mathrm{~b}_{5}{ }^{+}\right), \\ & 416.2,277.2, \\ & 287.3,600.4, \\ & 382.2,434.3, \\ & 522.3\left(\mathrm{y}^{+}+\right), \\ & 461.2\left(\mathrm{~b}^{+}\right), \\ & 332.2\left(\mathrm{~b}_{3}{ }^{+}\right) \end{aligned}$	9.10-12.45	11.30 ± 0.01	24	0.08	1.5-368	1.1	1.5	4.9	100
15-LOX	EITEIGLQ- GAQDR	MS ${ }^{3}$	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{5}{ }^{+}$	477.2	546.3	$528.3\left(\mathrm{~b}_{5}{ }^{+}\right)$, $511.2,330.1$, $384.1,401.2$, $215.2,244.1$, $290.1\left(\mathrm{y}_{2}{ }^{+}\right)$, $327.2\left(\mathrm{~b}^{+}{ }^{+}\right.$, $418.2\left(\mathrm{y}_{3}{ }^{+}\right)$	12.45-14.40	13.63 ± 0.01	21	0.07	0.84-113	0.56	0.84	4.0	211
CYC1	DVCTFLR	MRM	*	*	*	-	14.40-17.03	14.85 ± 0.03	*	-	*	-	-	-	-
GAPDH	GALQNIIPASTGAAK	MRM	*	*	*	-	14.40-17.03	15.09 ± 0.03	*	-	*	-	-	-	-
$\beta-/ \gamma$-actin	VAPEEHPV. LLTEAPLNPK	MRM	*	*	*	-	14.40-17.03	15.68 ± 0.04	*	-	*	-	-	-	-
COX-1/2	LILIGETIK	MS ${ }^{3}$	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	500.3	773.3	$\begin{gathered} 755.5\left(\mathrm{~b}_{7}^{+}\right), \\ 609.4,49.3, \\ 361.2\left(\mathrm{y}_{3}{ }^{+}\right), \\ 310.3,547.3 \\ \left(y_{5}^{+}\right), 383,3, \\ 41.3,514.3 \\ \left(\mathrm{~b}_{5}^{+}\right), 591.4 \end{gathered}$	17.03-18.26	18.03 ± 0.01	23	0.12	0.13-4.0	0.053	0.13	0.27	18
12-LOX	LWEIIAR	MS ${ }^{3}$	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	450.8	601.4	$583.4\left(\mathrm{~b}_{5}{ }^{+}\right)$, $472.3\left(\mathrm{y}_{4}{ }^{+}\right)$, $338.3,342.2$, $292.3,310.3$, $359.2\left(\mathrm{y}_{3}{ }^{+}\right)$, $356.2\left(\mathrm{~b}_{3}{ }^{+}\right)$, $243.1\left(\mathrm{~b}_{2}{ }^{+}\right)$, 409.4	18.26-18.62	18.51 ± 0.01	21	0.07	0.075-25	0.050	0.075	0.23	19

Table 2 (continued)

15-LOX-2	$\underset{\text { VDR }}{\substack{\text { ELLIVGQV. }}}$	MS ${ }^{3}$	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	669.4	770.4	$\begin{gathered} 752.4\left(\mathrm{~b}_{7}{ }^{+}\right), \\ 283.1\left(\mathrm{~b}_{3}{ }^{+}\right), \\ 596.4\left(\mathrm{~b}^{+}\right), \\ 382.2\left(\mathrm{~b}^{+}\right), \\ 464.4,436.6, \\ 365.4,337.2 \\ \left(\mathrm{y}_{6}{ }^{+}+\right), 481.3 \\ \left(\mathrm{~b}_{5}{ }^{+}\right), 587.5 \end{gathered}$	18.62-19.59	18.76 ± 0.01	30	0.13	0.44-22	0.22	0.44	1.5	83
COX-2	FDPELLFNK	MS ${ }^{3}$	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{++}$	561.8	430.7	$\begin{aligned} & 634.4\left(\mathrm{y}_{5}+\right), \\ & 227.1\left(\mathrm{~b}_{2}{ }^{+}\right), \\ & 521.3\left(\mathrm{y}_{4}{ }^{+}\right), \\ & 340.2\left(\mathrm{~b}_{3}{ }^{+}\right), \\ & 408.2\left(\mathrm{y}_{3}{ }^{+}\right), \\ & 763.4\left(\mathrm{y}_{6}{ }^{+}\right), \\ & 261.2\left(\mathrm{y}_{2}{ }^{+}\right), \\ & 745.3,697.2, \\ & 373.2 \end{aligned}$	19.59-21.90	20.44 ± 0.01	25	0.05	0.084-42	0.042	0.084	0.24	15
5-LOX	DDGLLVWEIAR	MS ${ }^{3}$	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	643.8	674.4	$\begin{aligned} & 359.2\left(\mathrm{y}_{3}{ }^{+}\right), \\ & 387.2\left(\mathrm{~b}_{3}{ }^{+}\right), \\ & 316.1\left(\mathrm{~b}_{2}^{+}\right), \\ & 656.4\left(\mathrm{~b}_{5}^{+}\right), \\ & 324.5,638.4, \\ & 612.4,595.4, \\ & 344.4,510.4 \end{aligned}$	21.90-36.00	23.38 ± 0.01	25	0.11	0.49-122	0.37	0.49	2.4	144
(B)															
Protein	Peptide	Mode	Transition $(\mathbf{Q} 1 \rightarrow \mathbf{Q} 3)$	Q1 m/z	Q3 m/z	m / z of MS 3 fragment ions summed for MRM ${ }^{3}$	Time period [min]	RT [min]	CE (V)	AF2 (V)	IS concen tration in vial [nM]				
PPIB	IGDEDVGR	MRM	*	*	*	-	0.00-6.61	5.99 ± 0.01	*	-	50				
COX-1	DCPTPMGTK	MS^{3}	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	507.7	739.4	$\begin{aligned} & 652.3,721.4 \\ & \left(b_{1}^{+}\right), 703.3 \\ & 387.2,541.3 \\ & \left(y_{5}^{+}\right) \end{aligned}$	6.61-9.10	6.92 ± 0.01	19	0.08	25				
Flap	TGTLAFER	MS ${ }^{3}$	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	452.7	645.4	$\begin{aligned} & 627.3\left(b_{5}{ }^{+}\right), \\ & 4255.2,277.2, \\ & 287.3,391.2 \end{aligned}$	9.10-12.45	11.30 ± 0.01	24	0.08	25				
15-LOX	EITEIGLQ- GAQDR	MS^{3}	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{5}{ }^{+}$	480.6	556.3	$\begin{aligned} & 538.3\left(\mathrm{~b}_{5}{ }^{+}\right), \\ & 372.2\left(\mathrm{~b}_{4}{ }^{+}\right), \\ & 521.2,330.1, \\ & 226.1 \end{aligned}$	12.45-14.40	13.63 ± 0.01	21	0.07	25				
CYC1	DVCTFLR	MRM	*	*	*	-	14.40-17.03	14.85 ± 0.03	*	-	50				
GAPDH	GALQNIIPASTGAAK	MRM	*	*	*	-	14.40-17.03	15.09 ± 0.03	*	-	50				
$\beta-/ \gamma$-actin	VAPEEHPV. LLTEAPLNPK	MRM	*	*	*	-	14.40-17.03	15.68 ± 0.04	*	-	100				

Table 2 (continued)

COX-1/2	LILIGETIK	MS ${ }^{3}$	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	504.3	781.5	$\begin{gathered} 496.3,451.1, \\ 310.2,763.5 \\ \left(\mathbf{b}_{7}^{+}\right), 555.3 \\ \left(\mathrm{y}_{5}^{+}\right) \end{gathered}$	17.03-18.26	18.03 ± 0.01	23	0.12	25
12-LOX	LWEIIAR	MS ${ }^{3}$	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	455.8	611.3	$\begin{aligned} & 593.4\left(\mathrm{~b}_{5}{ }^{+}\right), \\ & 482.3\left(\mathrm{y}^{+}\right), \\ & 338.3,351.2, \\ & 238.2 \end{aligned}$	18.26-18.62	18.51 ± 0.01	21	0.07	25
15-LOX-2	$\begin{aligned} & \text { ELLIVPGQV- } \\ & \text { VDR } \end{aligned}$	MS ${ }^{3}$	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	674.4	780.4	$\begin{aligned} & 283.1\left(\mathrm{~b}_{3}{ }^{+}\right), \\ & 762.4\left(\mathrm{~b}_{7}{ }^{+}\right), \\ & 382.2\left(\mathrm{~b}_{4}{ }^{+}\right), \\ & 365.4,337.2 \end{aligned}$	18.62-19.59	18.76 ± 0.01	30	0.13	25
COX-2	FDPPELLFNK	MS ${ }^{3}$	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{++}$	565.8	434.8	$\begin{gathered} 642.4\left(\mathrm{y}_{5}^{+}\right), \\ 227.1\left(\mathrm{~b}_{2}{ }^{+}\right), \\ 771.4\left(\mathrm{y}_{6}{ }^{+}\right), \\ 529.3\left(\mathrm{y}_{4}^{+}\right), \\ 340.2\left(\mathrm{~b}_{3}{ }^{+}\right) \end{gathered}$	19.59-21.90	20.44 ± 0.01	25	0.05	25
5-LOX	DDGLLVWEIAR	MS ${ }^{3}$	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	648.8	684.4	$\begin{aligned} & 369.2\left(y_{3}{ }_{3}\right), \\ & 387.2\left(\mathrm{~b}_{3}{ }^{+}\right), \\ & 648.5,35, \\ & 466.2 \end{aligned}$	21.90-36.00	23.38 ± 0.01	25	0.11	25

[^1]entrance potentials (EP), collision cell exit potentials (CXP), and collision energies (CE) were optimized for each of the oxylipins. MS parameters for oxylipin analysis can be found in ESM Table S14 together with a detailed description of the standard series preparation (ESM Sect. 1). The oxylipin concentrations were quantified using external calibrations with IS, and they were normalized to the absolute protein content determined with bicinchoninic acid assay [27].

The peptides were chromatographically separated with a gradient composed of $95 / 5 \%$ water/acetonitrile (mobile phase A) and $5 / 95 \%$ water/acetonitrile (mobile phase B), both containing 0.1% acetic acid at a flow rate of $0.3 \mathrm{~mL} \mathrm{~min}^{-1}$ as follows: $0 \% \mathrm{~B}$ at $0 \mathrm{~min}, 0 \% \mathrm{~B}$ at 1 min , 35% B at $30.5 \mathrm{~min}, 100 \%$ B at $30.6 \mathrm{~min}, 100 \%$ B at 33.5 min , 0% B at 33.7 min , and 0% B at 36 min . The LC system for peptide analysis was coupled to a $6500+$ hybrid triple quadrupole linear ion trap mass spectrometer (QTRAP; Sciex) in $\mathrm{ESI}(+)$-mode, with the following settings: ion spray voltage, 5500 V ; capillary temperature, $550^{\circ} \mathrm{C}$; curtain gas $\mathrm{N}_{2}, 50$ psi; nebulizer gas (GS1) $\mathrm{N}_{2}, 60 \mathrm{psi}$; and drying gas (GS2) $\mathrm{N}_{2}, 60 \mathrm{psi}$, generated with N_{2} generator Eco Inert-ESP (DTW, Bottrop, Germany). DP, EP, and CXP were set to $40 \mathrm{~V}, 10 \mathrm{~V}$, and 10 V , respectively, and CE were optimized for each of the peptides (Tables 1 and 2; ESM Table S7). CAD gas was set to medium. Analyst (Sciex, version 1.7) was used for instrument control and data acquisition, and Multiquant (Sciex, version 3.0.2) software was used for data analysis. The peptide/protein concentrations were quantified using external calibrations with IS (ESM Sect. 2.1; ESM Table S5; Tables 1 and 2; and ESM Table S7), and they were normalized to the absolute protein content determined with bicinchoninic acid assay [27].

Results

The ARA cascade plays a key role in the regulation of many different physiological processes. In order to understand the crosstalk between the different enzymatic pathways of the ARA cascade (Fig. 1) and modulation thereof, quantitative information for both oxylipin levels as well as enzyme/protein abundance is needed.

For this reason, we developed an analytical approach allowing to quantify the enzymes of the ARA cascade and combined it with our targeted oxylipin metabolomics method [21-23]. Combining targeted LC-MS/MS-based proteomics and oxylipin metabolomics as multi-omics methodology allows to quantify the abundance of all relevant enzymes of the COX and the LOX pathways (COX-1 and COX-2, 5-LOX, 12-LOX, 15-LOX, 15-LOX-2, and FLAP) as well as four housekeeping proteins and oxylipin levels from a single sample down to pM ranges.

Oxylipins were extracted from the methanolic supernatant resulting after sonication and precipitation of the cell samples, and enzyme/protein levels were quantified in the precipitated protein residue. Thus, only a single sample is required for quantitatively assessing the ARA cascade on metabolite and protein abundance levels in biological samples.

Targeted proteomics LC-MS/MS/(MS) method

The enzyme abundance is measured in form of representative peptides with amino acid (aa) sequences specific to the target enzyme. Based on an in silico tryptic digestion of the COX and LOX enzymes, two proteotypic peptides with unique [28,29] aa sequences were selected per enzyme from the multitude of theoretically possible peptides (ESM Table S6). The results from the in silico digestion were narrowed down by a defined set of criteria [18] including fixed peptide lengths ($7-22 \mathrm{aa}$) as well as acceptable calculated cleavage probabilities [30] (e.g., $\geq 70 \%$ using cleavage prediction with decision trees [31]) and predicted retention times (3-30 min) [32]. Possible variations in relevant splice variants [33] were considered as well as the presence of maximum two unfavored aa (C, M, N, Q, W). Peptides containing single nucleotide polymorphisms [33] or posttranslational modifications were excluded [33, 34]. After the in silico peptide selection and evaluation of three to five candidates in digested cell matrix, the MS/MS parameters were optimized, and two peptides per protein were finally selected based on their MS sensitivity, selectivity, and chromatographic behavior (Tables 1 and 2; ESM Table S7).

In MS^{3} mode, the triple quadrupole QTRAP instrument uses the linear ion trap (LIT) in Q3 for a second fragmentation of the CAD fragment ions. With the aim of achieving higher selectivity and, thus, sensitivity for quantification of the peptides in complex biological matrices by this additional fragmentation, we chose an MS^{3} approach for the targeted proteomics method. For each peptide, the CE of multiple CAD fragment ions was optimized, and two to three of the most intense fragment ions, ideally with m / z exceeding the precursor ion m / z (e.g., a transition from a double charge precursor to a single charged fragment), were chosen for further evaluation in MS^{3} mode. Their excitation energies (AF2) were optimized in 0.01 V steps, and the final CAD fragment ions for the MS^{3} method were selected based on the highest sensitivities and/or lack of matrix interference in digested cell lysates for each peptide (Table 2).

The fixed fill time (FFT) for the LIT had a major impact on the signal intensity which increased with longer FFTs (ESM Fig. S1A). The maximum FFT of 250 ms provided the highest sensitivities and was thus used for all peptides (except abundant TGTLAFER, 100 ms , and IS peptides,

25 ms). In order to allow the simultaneous analysis of all peptides with acceptable cycle times and, thus, data points per peak, the analytical run was split into 10 periods (i.e., time windows) with separate MS experiments. Despite excellent chromatographic separation (Table 2; Fig. 2A (i)), with average peak widths at half maximum height (FWHM) of 4.9 s , the number of initially selected peptides needed to be reduced to one peptide per protein for the MRM^{3} method. The selection was made based on the peptides' sensitivities and retention times to assure that all proteins are detected in the separate time windows of the chromatogram. At a LIT scan rate of $10000 \mathrm{Da} \mathrm{s}^{-1}$, a total cycle time of $372-572 \mathrm{~ms}$ for each of the eight MS ${ }^{3}$ experiments resulted and thus 9-12 data points over the FWHM of the peak. The peptides of four housekeeping proteins were measured in two periods set in MRM mode with resulting cycle times of 150 and 450 ms at constant dwell times of 20 ms .

For data evaluation, MRM ${ }^{3}$ transitions were constructed from the MS^{3} spectra by the Multiquant 3.0.2 software. Assessing the MRM ${ }^{3}$ transitions of one MS^{3} fragment ion compared to the sum of multiple MS^{3} fragment ions showed higher signal intensity for the use of multiple fragment ions (ESM Fig. S2). Thus, for the final method, the ten most abundant MS 3 fragment ions of the analyte peptides and five of the IS peptides were selected for data analysis.

The MS^{3} approach was compared to scheduled MRM detection. Here, the windows were set to $\pm 45 \mathrm{~s}$ at the expected retention time and a cycle time of 0.4 s resulting in comparable average 14 data points over FWHM of the chromatographic peaks. Two peptides per protein were included in the method comprising again all COX and relevant LOX pathway enzymes as well as four housekeeping proteins, resulting in a total of 23 peptides (Fig. 2A (ii), Table 1, ESM Table S7). The parallel measurement of three transitions per peptide ensures its identity by calculating the area ratios between one quantifier and two qualifier transitions and comparing the area ratios of the samples to the standards. As acceptance criteria, the ratios for a peak in a biological sample need to be within $\pm 20 \%$ of the area ratio measured in standards (ESM Table S8) [18].

The additional fragmentation in MS^{3} increased selectivity allowing separation of the analyte from interfering matrix signals. This is shown in Fig. 2B (i) and (ii) for the low abundant COX-2 peptide FDPELLFNK in differentiated ($50 \mathrm{nM} \mathrm{VD}_{3}$ and $1 \mathrm{ng} \mathrm{mL}^{-1}$ TGF- $\beta 1,72 \mathrm{~h}$) and LPS-stimulated ($1 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}, 6 \mathrm{~h}$) THP- 1 cells. The MRM ${ }^{3}$ method enables sensitive detection and quantification of COX and LOX peptides in the medium to high pM range (31-560 pM) (ESM Fig. S3; Table 2). However, the MRM method was more sensitive with up to tenfold lower limits of detection (LOD) ranging from 4.2 to 56 pM and lower limits of quantification (LLOQ) in the range of $16-122 \mathrm{pM}$ for the same peptides (ESM Fig. S3; Table 1).

Overfilling of the trap at higher concentrations results in a breakdown of the MS signal (ESM Fig. S1B) and restricts the calibration range of the MRM^{3} method to $4.0-368 \mathrm{nM}$ depending on the peptide (Table 2). This limits the linear working range of the MRM^{3} method to only two to three orders of magnitude. Here, the MRM method also shows a clear advantage allowing linear calibration over approximately five orders of magnitude from the pM LLOQ up to the low $\mu \mathrm{M}$ range (Table 1). Thus, MRM is generally advantageous. If the analyte signal is interfered in matrix, MRM^{3} provides an additional level of selectivity and is useful for complicated biological matrices, while MRM is more sensitive and allows analysis within a large linear range. The developed method is not only sensitive but shows good precision and accuracy as demonstrated for the repeated independent analysis of THP-1 macrophages. The intraday precision was generally $\leq 15 \%$, and interday precision was $<30 \%$ in the LPS-stimulated cells (ESM Table S9). The accuracy, determined after spiking the unstimulated cells with peptides during sample preparation, was between 95 and 140% (ESM Table S10). The dual approach of targeted oxylipin metabolomics and proteomics allows the analysis of oxylipin concentrations and protein levels in one sample. This powerful tool was applied to comprehensively analyze the ARA cascade in immune cells.

Analysis of the ARA cascade in immune cells

The lipid mediators formed in the ARA cascade are an essential part of the immune system and function i.a. as signaling molecules between different types of immune cells in the host defense. Using the developed LC-MS/ MS-based proteomics platform together with the targeted oxylipin metabolomics method, the ARA cascade was comprehensively analyzed in human macrophages for the first time with this novel approach. The monocytes from the THP-1 cell line were examined during differentiation to macrophage-like cells with 50 nM VD 3 and $1 \mathrm{ng} \mathrm{mL}^{-1}$ TGF- $\beta 1$ for 72 h . This process induced the ALOX5 gene expression along with 5-LOX product formation (5-HETE and LTB_{4}) (Fig. 3A (i), (ii)). While other LOX were not present, COX-1 and FLAP levels increased by 17- and 32-fold, respectively, after differentiation. Additional treatment of the macrophages with $1 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$ LPS for 6 h stimulated $P T G S 2$ gene expression and formation of PGE_{2} and 12 -HHT which was below the detection limit in THP-1 cells bearing COX-1 alone (THP-1 monocytes and macrophages) (Fig. 3A (i), (ii)). The COX-2 protein level increased strongly after LPS ($1 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$) treatment from below the detection limit $\left(\mathrm{t}_{0}\right)$ to approximately $80 \mathrm{fmol} \mathrm{mg}^{-1}$ protein at the peak after $6-8 \mathrm{~h}$ where it declined to $40 \mathrm{fmol} \mathrm{mg}^{-1}$ protein after 24 h (Fig. 3A (iii)). Pretreatment of the THP-1 macrophages with

Fig. 2 Chromatographic separation of the peptides from the COX and LOX enzyme pathways as well as housekeeping peptides with detection in (i) $M^{3}{ }^{3}$ and (ii) MRM mode on an LC-MS/MS QTRAP system. Shown are \mathbf{A} (i) and (ii) a mix of peptide standards (25100 nM) as well as \mathbf{B} (i) and (ii) the signal of COX-2 peptide FDPELLFNK in THP-1 cells (i) $\mathrm{MS}^{3}: \mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{++} \rightarrow \Sigma 10$ MS 3 fragments; (ii) MRM: $\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}^{++}$. The cells were differentiated for 72 h with vitamin $\mathrm{D}_{3}(50 \mathrm{nM})$ and TGF$\beta 1\left(1 \mathrm{ng} \mathrm{mL}^{-1}\right)$ and treated with LPS ($1 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$) for 6 h

COX-1COX-1/2COX-25-LOX FLAP12-LOX15-LOX15-LOX-2 PPIBCYC1GAPDH β - $/ \gamma$-actin (A) in standard

ii) MRM
(B) in sample
i) MRM^{3}

Time [min]
ii) MRM
dexamethasone suppressed the induction of COX-2 and concomitant prostanoid synthesis with potencies $\left(\mathrm{IC}_{50}\right)$ of $3.4 \mathrm{nM}(\mathrm{COX}-2 ; 95 \% \mathrm{CI}, 2.3-4.9 \mathrm{nM})$ and $1.2 \mathrm{nM}\left(\mathrm{PGE}_{2}\right.$; 95% CI, $0.9-1.6 \mathrm{nM}$), respectively (Fig. 3A (iv)). The 5-LOX inhibitor PF4191834 suppressed 5-HETE formation with a potency $\left(\mathrm{IC}_{50}\right)$ of $26 \mathrm{nM}(95 \% \mathrm{CI}, 12-53 \mathrm{nM})$ and did not affect the 5-LOX abundance (Fig. 3A (v)).

In the next step, we investigated the expression of ARA cascade genes and oxylipin formation in differently polarized primary human macrophages. The different types of polarization led to distinct oxylipin and protein patterns (Fig. 3B (i), (ii)). In M0-like macrophages, which were derived from primary monocytic cells and incubated without cytokines for 8 days, only COX-1 and 12-LOX as well as its product 12 -HETE were detected. However, the presence of both enzymes is most likely attributed to platelet contamination which can be detected with our method since they are highly abundant in these cells (ESM Table S11). Relevant amounts of COX-1, 5-LOX, and FLAP $(0.4 \pm 0.1$, 0.4 ± 0.2, and $19 \pm 6 \mathrm{pmol} \mathrm{mg}^{-1}$ protein, respectively) were found in the macrophages polarized towards M1-like cells ($10 \mathrm{ng} \mathrm{mL}^{-1}$ CSF-2 and $10 \mathrm{ng} \mathrm{mL}^{-1}$ IFN γ) with the targeted proteomics method. Oxylipins formed via these pathways ($\mathrm{PGE}_{2}, 12-\mathrm{HHT}$, and 5 -HETE) as well as $12-$ and $15-$ HETE were detected at low levels ($\leq 5 \mathrm{pmol} \mathrm{mg}^{-1}$
protein) in the cells (Fig. 3B (i), (ii); ESM Table S12). Stimulation with $1 \mu \mathrm{~g} \mathrm{~mL}^{-1}$ LPS led to strong elevation of oxylipin concentrations, e.g., fourfold increase of PGE_{2} and 12-HHT as well as an approximately tenfold increase of 5- and 15-HETE. PTGS2 gene expression was induced by LPS, while the protein levels of COX-1 and FLAP were not modulated, and 5-LOX was slightly reduced. LC-MS analysis of the M2-like macrophages showed an extensive protein pattern: COX-1, 5-LOX, and FLAP as well as $15-\mathrm{LOX}$ and $15-\mathrm{LOX}-2$ were present. High levels of 15-HETE ($243 \pm 20 \mathrm{pmol} \mathrm{mg}{ }^{-1}$ protein) as well as moderate levels of $12-\mathrm{HETE}\left(21 \pm 2 \mathrm{pmol} \mathrm{mg}{ }^{-1}\right)$ and $12-\mathrm{HHT}$ ($19 \pm 6 \mathrm{pmol} \mathrm{mg}{ }^{-1}$ protein) dominated the oxylipin profile, while PGE_{2} and 5-HETE were found at approximately 2 pmol mg ${ }^{-1}$ protein (Fig. 3B (i), (ii); ESM Table S12). Interestingly, the additional LPS treatment only led to an approximately twofold increase of PGE_{2} and 12-HHT concentrations but did not affect any of the oxylipins from the LOX pathways. Apart from COX-2 induction, the levels of the ARA cascade enzymes were not changed by LPS (Fig. 3 B (i), (ii)). While the COX-2 levels were similar in both (LPS-stimulated) M1- and M2-like cells, 5-LOX and FLAP levels were two- and fivefold higher in M1-like and COX-1 levels were higher in M2-like macrophages. However, all of the analyzed oxylipins were higher concentrated in M2-like

ii)

iv) COX-2 Blockage

(B) Primary Human Macrophages
M0-type \quad M1-type \quad M1-type + LPS \quad M2-type \quad M2-type + LPS

4Fig. 3 Comprehensive characterization of immune cells using combined targeted oxylipin metabolomics and proteomics: A THP-1 cell line and B primary human macrophages. A (i) Oxylipin concentrations and (ii) enzyme levels in monocytic and macrophage-like THP-1 cell line with and without lipopolysaccharide (LPS) stimulation. Cells were differentiated to macrophages with $50 \mathrm{nM} 1,25$-dihydroxyvitamin $\mathrm{D}_{3}\left(\mathrm{VD}_{3}\right)$ and $1 \mathrm{ng} \mathrm{mL}{ }^{-1}$ TGF- $\beta 1$ for 72 h , with or without LPS stimulation ($1 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$) for 6 h (mean $\pm \mathrm{SD}, n=3$). A (iii) COX-2 abundance following time-dependent LPS stimulation $\left(1 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}\right)$. Shown are mean \pm SD, $n=3$. The potencies $\left(\mathrm{IC}_{50}\right)$ of COX- 2 and 5-LOX inhibition by \mathbf{A} (iv) dexamethasone, calculated based on PGE_{2} formation and COX-2 abundance, and \mathbf{A} (v) 5-LOX inhibitor PF4191834, calculated based on 5-HETE formation, relative to control incubations (0.1% DMSO). Shown are mean \pm SD, $n=3$ 6. Correlation of \mathbf{B} (i) oxylipin formation and (ii) enzyme levels in human macrophages derived from primary blood monocytic cells. Cells were differentiated with $10 \mathrm{ng} \mathrm{mL}^{-1}$ CSF-2 (M1-like cells) or CSF-1 (M2-like cells) for 8 days. For the final 48 h , they were treated with $10 \mathrm{ng} \mathrm{mL}{ }^{-1}$ IFN γ (M1-like cells) or IL-4 (M2-like cells) and with or without $1 \mu \mathrm{gLL}^{-1}$ LPS for the final 6 h . For M0-like cells, the adhered monocytes were left untreated for 7 days. Shown are mean \pm SEM, $n=5-6$
macrophages with the most pronounced differences between M1- and M2-like cells found for 15-HETE (>200-fold) and 12-HETE (approximately 20-fold) followed by PGE_{2}, 12-HHT, and 5-HETE (all approximately fourfold). Regarding the housekeeping proteins, only GAPDH showed strong differences between the M1- and M2-like macrophages indicating that it is not suited for normalization when investigating macrophage polarization (ESM Table S12).

The ARA cascade is an important target of pharmaceuticals because of its pivotal role in the regulation of the immune response and inflammation. We applied the multiomics LC-MS/MS-based approach on the quantitative characterization of pharmaceutical modulation of the ARA cascade to demonstrate its usefulness in drug development (Fig. 4A, B; ESM Table S13).

For the experiments, the primary human macrophages polarized towards M1- or M2-like phenotype were preincubated with the test compounds at sub-cytotoxic levels (ESM Figs. S4 and S5) for 1 h before LPS was added for the remaining 6 h . The COX-1/COX-2 inhibitor indomethacin strongly reduced the PGE_{2} and 12-HHT concentrations in both M1- and M2-like macrophages without relevantly modulating the COX-1 or COX-2 levels. Dexamethasone treatment also led to lowered concentrations of PGE_{2} and 12-HHT with a more pronounced effect in M1 (approximately 50% inhibition) compared to M2-like cells (approximately 20% inhibition). The decrease of prostanoid concentrations occurred together with a decrease of the COX-2 levels which was similar in both types (approximately 40\% inhibition) and did not affect COX-1. Both indomethacin and dexamethasone also markedly reduced 15-HETE formation in M1-like macrophages but had no effect in the M2-like cells. The celecoxib treatment of M2-like macrophages led to a moderate inhibition of the PGE_{2} and 12-HHT formation,
while the concentrations of LOX products slightly increased. COX-2 and 15-LOX-2 levels were slightly reduced, and the selective COX-2 inhibitor did not affect COX-1 (Fig. 4A, B; ESM Table S13). The 5-LOX inhibitor PF4191834 hardly reduced the 5-HETE concentration in the M1-like macrophages. The PGE_{2} and 12-HHT concentrations were unaffected by PF4191834, while the 12- and 15-HETE concentrations were slightly reduced. Regarding the $15-$ LOX pathway, ML351 led to a marked inhibition of both 12and 15-HETE formation without affecting 15-LOX and 15-LOX-2 levels. 5-LOX abundance was strongly reduced ($23 \pm 4 \%$ of control) with only a slight effect on the 5 -HETE concentration. In these incubations, the PGE_{2} and 12 -HHT concentrations were moderately increased, and the COX-1 and COX-2 levels were slightly elevated (Fig. 4A, B; ESM Table S13).

Conclusively, we combined our existing targeted oxylipin metabolomics method with an LC-MS/MS-based targeted proteomics method comprising all COX and relevant LOX pathway enzymes as well as four housekeeping proteins. While the more selective detection can be achieved with the MRM ${ }^{3}$ detection method, the MRM approach is characterized by higher sensitivity (in low pM range) and greater linear range up to $\mu \mathrm{M}$ concentrations. With our sensitive multi-omics approach, we were able to determine the oxylipin and protein levels of immune cells in a single sample. We successfully used this approach to thoroughly characterize the ARA cascade in different immune cells and demonstrated that quantitative changes induced by pharmaceutical modulation can be determined on protein and metabolite levels.

Discussion

Oxylipins formed in the ARA cascade act as potent lipid mediators regulating many physiological functions. In order to profoundly evaluate and understand modulation of this important signaling pathway, it is crucial to investigate not only changes in metabolite concentrations, i.e., eicosanoids and oxylipins, but also on enzyme levels in parallel. Therefore, we combined our targeted oxylipin metabolomics method covering 239 analytes (ESM Table S4) - allowing the quantitative characterization of the complex crosstalk between the different branches of the ARA cascade - with a novel LC-MS/MS-based targeted proteomics approach. The developed targeted proteomics method allows the quantitative analysis of all COX (COX-1 and COX-2) as well as relevant enzymes of the LOX pathway (5-LOX, 12-LOX, 15-LOX, 15-LOX-2, and FLAP) and four housekeeping proteins $(\beta-/ \gamma$-actin, PPIB, GAPDH, CYC1). This is the first LC-MS/MS(/MS)-based method for the targeted analysis of the COX and LOX pathways of the ARA cascade.

Fig. 4 Investigation of ARA cascade modulation in human macrophages using LC-MS/MS-based targeted A oxylipin metabolomics and \mathbf{B} proteomics. Primary blood monocytic cells were differentiated to macrophages with $10 \mathrm{ng} \mathrm{mL}^{-1}$ CSF-2 (M1-like cells) or CSF-1 (M2-like cells) for 8 days and with $10 \mathrm{ng} \mathrm{mL}^{-1}$ IFN γ (M1-like cells) or IL-4 (M2-like cells) for the final 48 h . The cells were incubated with the different drugs at the following concentrations for the final

7 h during additional LPS stimulation $\left(1 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}\right)$ for the final 6 h , $1 \mu \mathrm{M} \mathrm{COX}-1 / 2$ inhibitor indomethacin, 100 nM dexamethasone, $5 \mu \mathrm{M}$ COX-2 inhibitor celecoxib, $5 \mu \mathrm{M}$ 5-LOX inhibitor PF4191834, $10 \mu \mathrm{M} 15-\mathrm{LOX}$ inhibitor ML351, or 0.1% DMSO as vehicle control. Relative product formation was calculated based on the mean of 2 controls per donor. Shown are mean \pm SEM, $n=3-5$ donors

In targeted proteomics, different MS modes can be used for detection on hybrid triple quadrupole-LIT mass spectrometers. In MRM mode, the analytes are quantified via the pair of a precursor and a specific fragment ion resulting from CAD-based fragmentation. In MRM ${ }^{3}$, these CAD ions are again fragmented in the LIT, and an ion chromatogram is reconstructed from the secondary fragment ions [35]. We compared both approaches in detail. The LIT fill time had a strong effect on sensitivity of the MRM ${ }^{3}$ mode. FFT was preferred over dynamic fill time (DFT) due to its better signal reproducibility and accuracy based on the resulting identical cycle times for every sample [36]. The signal intensity increased with longer FFT (ESM Fig. S1A) in line with literature [36, 37]. Long FFTs, however, have the drawback of a more rapid exhaustion of LIT capacity and breakdown of the MS signal (ESM Fig. S1B). This generally limited the upper calibration range of our MRM ${ }^{3}$ method to low (4 nM) or medium (368 nM) nM concentrations (corresponding to $0.28-9.5 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$ enzyme equivalent) (Table 2), comparable to other proteomics applications of MRM 3 where linearity was reported for concentrations up to $0.5-20 \mu \mathrm{~g} \mathrm{~mL}$ [$35,36,38]$. Using MRM, however, robust quantification is
possible over a concentration range of five orders of magnitude up to low $\mu \mathrm{M}$ concentrations (Table 1; ESM Table S7).

Summing the ten most abundant fragment ions from the MS^{3} spectra as "MRM ${ }^{3}$ " during data evaluation enhanced sensitivity (ESM Fig. S2). In MRM ${ }^{3}$, the LODs of the COX and LOX peptides were in the low to medium pM range (equivalent to $11-209 \mathrm{pg}$ enzyme on column) and the LLOQs ranged from 75 to 840 pM , corresponding to $5-63 \mathrm{ng} \mathrm{mL}{ }^{-1}$ enzyme equivalent (Table 2; ESM Fig. S3). Other groups reported LLOQs in a similar range for MRM^{3}-based quantification on comparable instruments; e.g., several proteins were quantified down to concentrations between 10 and $80 \mathrm{ng} \mathrm{mL}^{-1}$ in human serum [35], the LLOQs of two inflammation markers were 7.8 and $156 \mathrm{ng} \mathrm{mL}^{-1}$ in plasma [38], and aquaprorin- 2 water channel protein could be measured at levels down to $0.5 \mathrm{ng} \mathrm{mL}^{-1}$ in human urine (corresponding to $5 \mathrm{ng} \mathrm{mL}^{-1}$ in the measuring solution) [36]. Here, the LLOQs were two up to tenfold lower in comparison to MRM-based quantification in matrix [$35,36,38$]. MS^{3} leads to lower signal intensities than MRM due to inevitable losses during each fragmentation step. Thus, the sensitivity gain of

MRM 3 strongly depends on the reduction of interfering signals in biological matrices - the increased selectivity compensates the signal intensity loss [39]. The MRM detection of standards was up to tenfold more sensitive compared to MRM 3 (Table 1, 2; ESM Fig. S3) and provided sufficient sensitivity and selectivity in cell matrix. However, the additional MS^{3} filtering stage proved helpful to separate the COX-2 peptide FDPELLFNK from closely eluting background matrix in THP-1 cells (Fig. 2B (i), (ii)).

A relevant parameter for quantitative analysis is the number of data points per peak which is defined by the instrument cycle time. In order to enable MRM 3, the MS method was subdivided into ten time periods (Fig. 2A (i); Table 2) in order to keep these within an accepted range of $10-15$ data points per peak (FWHM). Summing the excitation time (25 ms for each MS^{3} fragmentation), FFT (250/100 and 25 ms), and individual scan times per peptide (scan ranges $450-700 \mathrm{Da}$), the cycle times per period in the MRM 3 method were all below 600 ms , thus, allowing the detection of acceptable 9-12 data points per peak (FWHM). The long cycle times of the LIT have already been addressed as drawback of MRM ${ }^{3}$ methodology drastically limiting the number of concurrently measurable analytes [39, 40] and thus multiplexing capacities. This might be one of the reasons why MRM ${ }^{3}$ has not (yet) been employed for the analysis of (highly) multiplexed methods, e.g., the targeted analysis of pathway proteomes.

In our view, due to these drawbacks, (i) limited linear range, (ii) higher LLOQs, and (iii) limited multiplexing capacities based on the long cycle times and the use of time periods, the $M R M^{3}$ method is not favored for routine analysis of pathway proteomes such as the ARA cascade. However, it serves as complimentary method, in case of heavy matrix background interference disturbing MRM analysis.

Combining this targeted proteomics approach with our oxylipin metabolomics method, we comprehensively characterized the ARA cascade in immune cells for the first time solely by LC-MS/MS in a single sample. This is especially advantageous for experiments with limited biological material such as primary human cells or tissue also known as singleplatform multi-omics [41]. Moreover, if applicable, further merging the sample preparation techniques of proteomics and metabolomics also reduces sample preparation time [42].

The analysis of monocytic THP-1 cells showed that differentiation with VD_{3} and TGFß1 to macrophage-like cells led to the induction of ALOX5 gene expression together with a drastic increase in levels of oxylipins (Fig. 3A (i), (ii)). $\mathrm{VD}_{3} / \mathrm{TGF} \beta 1$-based differentiation and concomitant increase of ALOX5 gene activity have been described for several myeloid cell lines (HL-60, Mono Mac 6, THP-1) [43-46]. Concomitant upregulation of the FLAP protein or mRNA levels (Fig. 3A (ii)) were also reported during similar
treatments in peripheral blood monocytic cells [47] or the monocytic cell line U937 [48].

The LPS treatment induced upregulation of COX-2 abundance together with increased product formation (Fig. 3A (i)-(iii)). With the quantitative multi-omics approach, we could show a dose-dependent inhibition of LPS-induced PGE_{2} formation and PTGS2 gene expression by dexamethasone for the first time. Both determined IC_{50} were similar $\left(\mathrm{IC}_{50}=1.2 \mathrm{nM}\right.$ and 3.4 nM) (Fig. 3A (iv)). This is consistent with the described mechanism of dexamethasone i.a. preventing the PTGS2 gene expression by its mRNA destabilization [49] and concomitantly reducing PGE_{2} formation. The remarkable potencies of dexamethasone in THP-1 macrophages were well within the range determined for inhibited PGE_{2} formation ($\mathrm{IC}_{50}=1.6 \mathrm{nM} ; 95 \%$ CI, $1.4-1.9 \mathrm{nM}$) in LPS-stimulated human monocytes [50]. No IC_{50} values have been determined for the inhibition of the PTGS2 gene expression with the commonly used semi-quantitative western blot method (relevant inhibition detected at 3 nM to $1 \mu \mathrm{M}$) [50, 51]; thus, the novel targeted proteomics method offers new opportunities for such detailed characterization. The competitive 5-LOX inhibitor PF4191834 strongly inhibited 5-LOX product formation in differentiated and LPS-treated THP-1 cells without affecting the 5 -LOX abundance $\left(\mathrm{IC}_{50}(5-\mathrm{HETE})=26 \mathrm{nM}\right)($ Fig. 3A (v)) fivefold more potently than in human whole blood assay $\left(\mathrm{IC}_{50}\left(\mathrm{LTB}_{4}\right)=130 \pm 10 \mathrm{nM}\right)$ [52]. The commonly used iron-ligand inhibitor zileuton as well as the FLAP inhibitor MK886 had only low inhibitory potential in this cell model which might be caused by interferences induced by the $\mathrm{VD}_{3} /$ TGF $\beta 1$ and/or LPS treatment.

The multi-omics approach allows to obtain true quantitative information on the oxylipin concentrations and enzyme abundance levels with sensitive LC-MS/MS methods. For the first time, differently polarized primary human macrophages were characterized with this unique approach and displayed distinct oxylipin and protein patterns for each type (Fig. 3B (i), (ii)). In the non-CSF-treated macrophages (M0-like cells), only COX-1, 12-LOX, and its product 12 -HETE were found. This pattern strongly resembles that of platelets (ESM Table S11) [53] which often contaminate monocyte preparations [54]. The presence of other enzymes (5-LOX, FLAP, and 15-LOX-2) and oxylipins at very low abundances as previously reported in M0-like macrophages [24] could not be supported. 5-LOX and FLAP were detected in M1- (CSF-2 and IFN γ-treated) and M2-like (CSF-1 and IL-4 treated) macrophages together with the corresponding oxylipins formed via this pathway (Fig. 3B (i), (ii); ESM Table S12). Varying 5-LOX levels between M1- and M2-like macrophages have been described [24, $55,56]$ and thus might be donor-dependent. However, the relatively low 5 -HETE concentrations in both macrophage types suggest only low 5-LOX activity and the detected

5-HETE levels could also result from autoxidation. Similarly, the data from the multi-omics investigation showing low levels of 12- and 15-HETE in M1-like macrophages could not be associated to LOX enzyme activity, since 12and $15-$ LOX as well as $15-$ LOX-2 were below the detection limits and thus might be also formed autoxidatively (Fig. 3B (i), (ii), ESM Table S12). The correlation between the tenfold increased 15-HETE concentration and LPS-stimulated COX-2 upregulation in our work is consistent with previous studies demonstrating that $15-$ HETE is a side product of $\operatorname{COX}(-2)[57,58]$. In the M2-like macrophages, the multiomics approach showed that high 15-HETE concentrations dominated their lipid mediator profile which coincided with the presence of $15-$ LOX and $15-$ LOX-2 in these cells. This is expected because IL-4 is used during differentiation to M2-like macrophages, causing a strong elevation of 15-LOX and 15 -LOX-2 abundances $[24,59,60]$. The dual reaction specificity of 15 -LOX $[61,62]$ giving rise to both $15-$ HETE as well as 12 -HETE also explains the formation of the second most abundant oxylipin 12-HETE in M2-like macrophages which was detected in parallel with the targeted oxylipin metabolomics method. Constitutive PTGS1 gene expression and LPS-induced PTGS2 expression were measured in both macrophage types. COX-2 abundances in both macrophage types were comparable, but LPS stimulation led to a more pronounced increase in product synthesis $\left(\mathrm{PGE}_{2}\right.$ and 12-HHT) in M1- vs. M2-like macrophages (Fig. 3B (i), (ii); ESM Table S12). Higher PGE_{2} formation in M1-like cells is also in line with previous reports [24, 55].

The dual targeted oxylipin metabolomics and proteomics approach also allows the detailed investigation of quantitative changes induced by pharmaceuticals on both metabolite and enzyme levels of the ARA cascade (Fig. 4; ESM Table S13).

The COX inhibitors hampered the synthesis of PGE_{2} and 12-HHT in M1- and M2-like macrophages. Indomethacin almost completely blocked product formation - inhibiting COX-1 and COX-2 [63] without affecting the enzyme abundance. Dexamethasone and celecoxib showed less inhibitory effects on product formation due to their specificity to only target COX-2 by direct specific inhibition in case of celecoxib [63] or reduction of its expression by the glucocorticoid dexamethasone [49]. The effect of the latter is also reflected in the results of the targeted proteomics analysis: markedly decreased COX-2 protein levels in M1- and M2-like macrophages (Fig. 4B). Interestingly, 15-HETE formation was reduced to a similar extent as the COX pathway products in indomethacin-like or dexamethasone-treated M1-like but not in the M2-like macrophages. This again demonstrated that $15-$ HETE must be predominately formed as COX product in M1-like macrophages as byproduct to prostaglandin synthesis [57, 58], while 15 -HETE is mainly produced in M2-like macrophages by 15-LOX and 15-LOX-2. The
finding underlines that the complexity of the ARA cascade can only be addressed with the use of comprehensive methods such as our multi-omics approach. It also showed that the other prominent LOX pathway products were hardly affected by the COX inhibitors, and only celecoxib caused a notable shunt (increased formation) towards the formation of the hydroxy fatty acids (ESM Table S13). The 5-LOX inhibitor PF4191834 hardly inhibited the 5-HETE formation in M1-like macrophages without a substrate shunt towards the other enzymes (Fig. 4A; ESM Table S13) at a concentration 40 -fold above the reported IC_{50} in human whole blood [52]. These results from the multi-omics analysis thus indicate that 5-LOX is hardly active in M1-like macrophages and that 5-HETE seems to be predominantly formed by autoxidation. The determined oxylipin pattern in M2-like macrophages again highlighted the dual reaction specificity of the 15-LOX [61, 62] as its inhibitor ML351 reduced both 12- and 15-HETE concentrations to the same extent. It showed only minimal inhibitory activity towards the other ARA cascade enzymes as described by [64] and rather promoted a substrate shunt towards the COX products. The parallel analysis of the cells with the targeted proteomics method supported that the inhibitor acted only on enzyme activity as the 15-LOX level remained unchanged (Fig. 4; ESM Table S13).

With our comprehensive multi-omics approach, we showed clear correlations between the product and enzyme patterns in different human immune cells. Quantitative changes induced by different pharmaceuticals were assessed on both oxylipin and protein levels providing insights into their modes of action on the modulation of the ARA cascade.

Conclusion

The combination of the developed proteomics method with our targeted oxylipin metabolomics platform as multiomics approach allows the quantitative investigation of 239 oxylipins and all COX (COX-1 and COX-2), relevant LOX pathway enzymes (5-, 12-, and 15-LOX, 15-LOX-2, and FLAP) from a single sample. MRM-based detection in proteomics is more favorable compared to MRM^{3} for investigation of the ARA cascade in immune cells due to its higher sensitivity, greater linear range, and higher multiplexing capacities. However, in case of matrix interference, MRM ${ }^{3}$ can be helpful. The application of the combined sensitive oxylipin metabolomics and proteomics approach to different human immune cells proved its usefulness in the thorough characterization of the ARA cascade. Here, it allowed the examination of quantitative changes induced by pharmaceuticals on oxylipin and enzyme abundance levels. Thus, this multi-omics strategy is an indispensable tool to study molecular modes of
action involved in the modulation of the ARA cascade and can be used in the future for the investigation, e.g., of novel pharmaceuticals or phytochemicals.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00216-022-04489-3.

Funding Open Access funding enabled and organized by Projekt DEAL. This work was supported by a Ph.D. fellowship from the Fonds der Chemischen Industrie to NMH and a grant (SCHE 1801) of the German Research Foundation (DFG) to NHS.

Declarations

Ethics approval Blood samples were drawn with the informed consent of the human subjects. The study was approved by the Ethical Committee of the University of Wuppertal.

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Gabbs M, Leng S, Devassy JG, Monirujjaman M, Aukema HM. Advances in our understanding of oxylipins derived from dietary PUFAs. Adv Nutr. 2015;6(5):513-40.
2. Yu R, Xiao L, Zhao G, Christman JW, van Breemen RB. Competitive enzymatic interactions determine the relative amounts of prostaglandins E_{2} and D_{2}. J Pharmacol Exp Ther. 2011;339(2):716-25.
3. Matsunobu T, Okuno T, Yokoyama C, Yokomizo T. Thromboxane A synthase-independent production of 12-hydroxyheptadecatrienoic acid, a BLT2 ligand. J Lipid Res. 2013;54(11):2979-87.
4. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Atertio Thromb Vasc Biol. 2011;31(5):986-1000.
5. Sheppe AEF, Edelmann MJ, Ottemann KM. Roles of eicosanoids in regulating inflammation and neutrophil migration as an innate host response to bacterial infections. Infect Immun. 2021;89(8):e00095-e121.
6. Okuno T, Yokomizo T. Metabolism and biological functions of 12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid. Prostaglandins Other Lipid Mediat. 2021;152:106502.
7. Rund KM, Nolte F, Doricic J, Greite R, Schott S, Lichtinghagen R, et al. Clinical blood sampling for oxylipin analysis - effect of storage and pneumatic tube transport of blood on free and total oxylipin profile in human plasma and serum. Analyst. 2020;145(6):2378-88.
8. Kuhn H, Banthiya S, van Leyen K. Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta, Mol Cell Biol Lipids. 2015;1851(4):308-30.
9. Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol. 2008;8(5):349-61.
10. Schebb NH, Kühn H, Kahnt AS, Rund KM, O'Donnell VB, Flamand N , et al. Formation, signaling and occurrence of specialized pro-resolving lipid mediators-what is the evidence so far? Front Pharmacol. 2022;13:838782.
11. Pinu FR, Beale DJ, Paten AM, Kouremenos K, Swarup S, Schirra HJ, et al. Systems biology and multi-omics integration: viewpoints from the metabolomics research community. Metabolites. 2019;9(4):76.
12. Canzler S, Schor J, Busch W, Schubert K, Rolle-Kampczyk UE, Seitz H, et al. Prospects and challenges of multi-omics data integration in toxicology. Arch Toxicol. 2020;94(2):371-88.
13. Gladine C, Ostermann AI, Newman JW, Schebb NH. MS-based targeted metabolomics of eicosanoids and other oxylipins: analytical and inter-individual variabilities. Free Radical Biol Med. 2019;144:72-89.
14. Hanáková Z, Hošek J, Kutil Z, Temml V, Landa P, Vaněk T, et al. Anti-inflammatory activity of natural geranylated flavonoids: cyclooxygenase and lipoxygenase inhibitory properties and proteomic analysis. J Nat Prod. 2017;80(4):999-1006.
15. Rodríguez-Blanco G, Zeneyedpour L, Duijvesz D, Hoogland AM, Verhoef EI, Kweldam CF, et al. Tissue proteomics outlines AGR2 AND LOX5 as markers for biochemical recurrence of prostate cancer. Oncotarget. 2018;9(92):36444-56.
16. Codreanu SG, Hoeksema MD, Slebos RJC, Zimmerman LJ, Rahman SMJ, Li M, et al. Identification of proteomic features to distinguish benign pulmonary nodules from lung adenocarcinoma. J Proteome Res. 2017;16(9):3266-76.
17. Jethwaney D, Islam MR, Leidal KG, de Bernabe DBV, Campbell KP, Nauseef WM, et al. Proteomic analysis of plasma membrane and secretory vesicles from human neutrophils. Proteome Sci. 2007;5(1):12.
18. Hartung NM, Ostermann AI, Immenschuh S, Schebb NH. Combined targeted proteomics and oxylipin metabolomics for monitoring of the COX-2 pathway. Proteomics. 2021;21(3-4):1900058.
19. Sabido E, Quehenberger O, Shen Q, Chang CY, Shah I, Armando AM, et al. Targeted proteomics of the eicosanoid biosynthetic pathway completes an integrated genomics-proteomics-metabolomics picture of cellular metabolism. Mol Cell Proteomics. 2012;11(7):M111.014746.
20. Tahir A, Bileck A, Muqaku B, Niederstaetter L, Kreutz D, Mayer RL, et al. Combined proteome and eicosanoid profiling approach for revealing implications of human fibroblasts in chronic inflammation. Anal Chem. 2017;89(3):1945-54.
21. Rund KM, Ostermann AI, Kutzner L, Galano JM, Oger C, Vigor C, et al. Development of an LC-ESI(-)-MS/MS method for the simultaneous quantification of 35 isoprostanes and isofurans derived from the major n3- and n6-PUFAs. Anal Chim Acta. 2018;1037:63-74.
22. Kutzner L, Rund KM, Ostermann AI, Hartung NM, Galano JM, Balas L, et al. Development of an optimized lc-ms method for the detection of specialized pro-resolving mediators in biological samples. Front Pharmacol. 2019;10:169.
23. Koch E, Mainka M, Dalle C, Ostermann AI, Rund KM, Kutzner L, et al. Stability of oxylipins during plasma generation and longterm storage. Talanta. 2020;217:121074.
24. Ebert R, Cumbana R, Lehmann C, Kutzner L, Toewe A, Ferreirós N , et al. Long-term stimulation of toll-like receptor-2 and -4 upregulates 5-LO and 15-LO-2 expression thereby inducing a lipid mediator shift in human monocyte-derived macrophages. Biochim Biophys Acta, Mol Cell Biol Lipids. 2020;1865(9):158702.
25. Dhurat R, Sukesh M. Principles and methods of preparation of platelet-rich plasma: a review and author's perspective. J Cutan Aesthet Surg. 2014;7(4):189-97.
26. O’Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem. 2000;267(17):5421-6.
27. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150(1):76-85.
28. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36(suppl_2):W5-9.
29. Schaeffer M, Gateau A, Teixeira D, Michel PA, Zahn-Zabal M, Lane L. The neXtProt peptide uniqueness checker: a tool for the proteomics community. Bioinformatics. 2017;33(21):3471-2.
30. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. In: Walker JM, editor., et al., The Proteomics Protocols Handbook. Totowa: Humana Press; 2005. p. 571-607.
31. Fannes T, Vandermarliere E, Schietgat L, Degroeve S, Martens L, Ramon J. Predicting tryptic cleavage from proteomics data using decision tree ensembles. J Proteome Res. 2013;12(5):2253-9.
32. Krokhin OV, Spicer V. Peptide retention standards and hydrophobicity indexes in reversed-phase high-performance liquid chromatography of peptides. Anal Chem. 2009;81(22):9522-30.
33. The Uniprot Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2018;47(D1):D506-15.
34. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2015;43(D1):D512-20.
35. Fortin T, Salvador A, Charrier JP, Lenz C, Bettsworth F, Lacoux X, et al. Multiple reaction monitoring cubed for protein quantification at the low nanogram/milliliter level in nondepleted human serum. Anal Chem. 2009;81(22):9343-52.
36. Jaffuel A, Lemoine J, Aubert C, Simon R, Léonard J-F, Gautier J-C, et al. Optimization of liquid chromatography-multiple reaction monitoring cubed mass spectrometry assay for protein quantification: application to aquaporin-2 water channel in human urine. J Chromatogr. 2013;1301:122-30.
37. Korte R, Brockmeyer J. MRM3-based LC-MS multi-method for the detection and quantification of nut allergens. Anal Bioanal Chem. 2016;408(27):7845-55.
38. Jeudy J, Salvador A, Simon R, Jaffuel A, Fonbonne C, Léonard J-F, et al. Overcoming biofluid protein complexity during targeted mass spectrometry detection and quantification of protein biomarkers by MRM cubed (MRM3). Anal Bioanal Chem. 2014;406(4):1193-200.
39. Lemoine J, Fortin T, Salvador A, Jaffuel A, Charrier J-P, ChoquetKastylevsky G. The current status of clinical proteomics and the use of MRM and MRM3 for biomarker validation. Expert Rev Mol Diagn. 2012;12(4):333-42.
40. Schmidlin T, Garrigues L, Lane CS, Mulder TC, van Doorn S, Post H, et al. Assessment of SRM, MRM3, and DIA for the targeted analysis of phosphorylation dynamics in non-small cell lung cancer. Proteomics. 2016;16(15-16):2193-205.
41. Blum BC, Mousavi F, Emili A. Single-platform 'multi-omic' profiling: unified mass spectrometry and computational workflows for integrative proteomics-metabolomics analysis. Mol Omics. 2018;14(5):307-19.
42. Zougman A, Wilson JP, Roberts LD, Banks RE. Detergent-free simultaneous sample preparation method for proteomics and metabolomics. J Proteome Res. 2020;19(7):2838-44.
43. Brungs M, Radmark O, Samuelsson B, Steinhilber D. On the induction of 5-lipoxygenase expression and activity in HL-60 Cells: effects of vitamin D3, retinoic acid, DMSO and TGF β. Biochem Biophys Res Commun. 1994;205(3):1572-80.
44. Brungs M, Radmark O, Samuelsson B, Steinhilber D. Sequential induction of 5-lipoxygenase gene-expression and
activity in mono-Mac-6 cells by transforming growth-factorbeta and 1,25-dihydroxyvitamin-D3. Proc Natl Acad Sci U S A. 1995;92(1):107-11.
45. Wöbke TK, von Knethen A, Steinhilber D, Sorg BL. CD69 is a TGF- $\beta / 1 \alpha, 25$-dihydroxyvitamin D3 target gene in monocytes. PLoS ONE. 2013;8(5):e64635.
46. Schlag K, Steinhilber D, Karas M, Sorg BL. Analysis of proximal ALOX5 promoter binding proteins by quantitative proteomics. FEBS J. 2020;287(20):4481-99
47. Coffey MJ, Gyetko M, Peters-Golden M. 1,25-Dihydroxyvitamin D3 upregulates 5-lipoxygenase metabolism and 5-lipoxygenase activating protein in peripheral blood monocytes as they differentiate into mature macrophages. J Lipid Mediators. 1993;6(1-3):43-51.
48. Gingras M-C, Margolin JF. Differential expression of multiple unexpected genes during U937 cell and macrophage differentiation detected by suppressive subtractive hybridization. Exp Hematol. 2000;28(1):65-76.
49. Lasa M, Brook M, Saklatvala J, Clark AR. Dexamethasone destabilizes cyclooxygenase 2 mRNA by inhibiting mitogenactivated protein kinase p38. Mol Cell Biol. 2001;21(3):771-80.
50. Willenberg I, Meschede AK, Schebb NH. Determining cyclooxygenase-2 activity in three different test systems utilizing online-solid phase extraction-liquid chromatography-mass spectrometry for parallel quantification of prostaglandin $\mathrm{E}(2)$, $\mathrm{D}(2)$ and thromboxane $\mathrm{B}(2)$. J Chromatogr A. 2015;1391:40-8.
51. Laufer S, Zechmeister P, Klein T. Development of an in-vitro test system for the evaluation of cyclooxygenase-2 inhibitors. Inflammation Res. 1999;48(3):133-8.
52. Masferrer JL, Zweifel BS, Hardy M, Anderson GD, Dufield D, Cortes-Burgos L, et al. Pharmacology of PF-4191834, a novel, selective non-redox 5-lipoxygenase inhibitor effective in inflammation and pain. J Pharmacol Exp Ther. 2010;334(1):294.
53. O'Donnell VB, Murphy RC, Watson SP. Platelet lipidomics. Circul Res. 2014;114(7):1185-203.
54. Prokopi M, Pula G, Mayr U, Devue C, Gallagher J, Xiao Q, et al. Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood. 2009;114(3):723-32.
55. Werner M, Jordan PM, Romp E, Czapka A, Rao Z, Kretzer C, et al. Targeting biosynthetic networks of the proinflammatory and proresolving lipid metabolome. FASEB J. 2019;33(5):6140-53.
56. Werz O, Gerstmeier J, Libreros S, De la Rosa X, Werner M, Norris PC, et al. Human macrophages differentially produce specific resolvin or leukotriene signals that depend on bacterial pathogenicity. Nat Comm. 2018;9(1):59.
57. Hecker M, Ullrich V, Fischer C, Meese CO. Identification of novel arachidonic acid metabolites formed by prostaglandin H synthase. Eur J Biochem. 1987;169(1):113-23.
58. O'Neill GP, Mancini JA, Kargman S, Yergey J, Kwan MY, Falgueyret JP, et al. Overexpression of human prostaglandin G/H synthase-1 and -2 by recombinant vaccinia virus: inhibition by nonsteroidal anti-inflammatory drugs and biosynthesis of 15 -hydroxyeicosatetraenoic acid. Mol Pharmacol. 1994;45(2):245-54.
59. Wuest SJA, Crucet M, Gemperle C, Loretz C, Hersberger M. Expression and regulation of 12/15-lipoxygenases in human primary macrophages. Atherosclerosis. 2012;225(1):121-7.
60. Snodgrass RG, Zezina E, Namgaladze D, Gupta S, Angioni C, Geisslinger G, et al. A novel function for 15-lipoxygenases in cholesterol homeostasis and CCL17 production in human macrophages. Front Immunol. 2018;9:1906.
61. Kühn H, Barnett J, Grunberger D, Baecker P, Chow J, Nguyen B, et al. Overexpression, purification and characterization of human recombinant 15 -lipoxygenase. Biochim Biophys Acta, Lipids Lipid Metab. 1993;1169(1):80-9.
62. Kutzner L, Goloshchapova K, Heydeck D, Stehling S, Kuhn H, Schebb NH. Mammalian ALOX15 orthologs exhibit pronounced dual positional specificity with docosahexaenoic acid. Biochim Biophys Acta, Mol Cell Biol Lipids. 2017;1862(7):666-75.
63. Willenberg I, Meschede AK, Gueler F, Jang MS, Shushakova N, Schebb NH. Food polyphenols fail to cause a biologically relevant reduction of COX-2 activity. PLoS ONE. 2015;10(10):e0139147.
64. Rai G, Joshi N, Jung JE, Liu Y, Schultz L, Yasgar A, et al. Potent and selective inhibitors of human reticulocyte 12/15-lipoxygenase as anti-stroke therapies. J Med Chem. 2014;57(10):4035-48.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Development of a quantitative proteomics approach for cyclooxygenases and lipoxygenases in parallel to quantitative oxylipin analysis allowing the comprehensive investigation of the arachidonic acid cascade

Nicole M. Hartung, Malwina Mainka, Rebecca Pfaff, Michael Kuhn, Sebastian Biernacki, Lilli Zinnert, Nils Helge Schebb*

Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
*Corresponding author (Tel: +49 202-439-3457; E-mail: nils@schebb-web.de)

Electronic Supplementary Material

Contents

1 Oxylipin analysis 3
1.1 Standard operating procedure for the preparation of master mixes 4
ESM Table S1 Preparation of master mixes and working stocks from single stock standards 6
1.2 Verification of standard concentrations 9
1.3 Preparation of dilution series for calibration 10
ESM Table S2 Preparation of new calibration series using master mixes. 11
1.4 Preparation of RT mixture 12
ESM Table S3 Analytes in the retention time mix for identification 12
ESM Table S4 Oxylipins covered by the targeted oxylipin metabolomics method 13
2 Proteomics analysis 20
2.1 Preparation of the proteomics calibration series 20
ESM Table S5 Correction factors for peptides 20
ESM Table S6 Proteotypic peptides for targeted proteomics method 21
ESM Table S7 Parameters for analysis of housekeeper peptides via LC-MS/MS 22
ESM Table S8 Identification of peptides 24
ESM Table S9 Precision: Intra- and interday variability 25
ESM Table S10 Accuracy 26
3 Detailed multi-omics data of human primary macrophages and platelets 27
ESM Table S11 Protein levels in human platelets 27
ESM Table S12 Investigation of the ARA cascade in primary human macrophages. 28
ESM Table S13 Modulation of the ARA cascade in primary human macrophages. 29
4 MRM 3 analysis 33
ESM Fig. S1 Optimization of QTRAP fill time for MS 3 experiments and evaluation of linear range in MS^{3}. 33
ESM Fig. S2 Improving MRM ${ }^{3}$ analysis 34
ESM Fig. S3 Comparison of MRM and MRM ${ }^{3}$ sensitivities. 35
5 Cell viability assays 36
ESM Fig. S4 Resazurin assay 36
ESM Fig. S5 Lactate dehydrogenase assay. 37
6 References 38

1 Oxylipin analysis

Preparation of calibration series

An oxylipin calibration series was prepared containing 54 analytes which was used in addition to the established calibration series (1). Here, we provide a detailed description of all steps.

Before the preparation started, all reusable glass ware (e.g. volumetric flasks, volumetric pipettes, gastight syringes) was checked for residual interfering compounds by rinsing them with methanol and analyzing the rinsing solution with the targeted oxylipin metabolomics LCMS/MS method (1-3). Next, the retention times of the new analytes were determined using the established LC gradient. Their MS parameters were optimized using single stocks of 100 nM which were infused into the MS per flow injection mode without analytical column $\left(0.3 \mathrm{~mL} \mathrm{~min}^{-1}, 35 / 65 \% \mathrm{~A} / \mathrm{B}\right)$. The Q1 m / z were determined in Q1 scans. The Q3 m / z for the MRM method were selected from the recorded fragment ion spectra with CE ramps over a range of 20 V , under consideration of sensitivity and selectivity. DP and CE were then optimized for the selected transitions.

The single stocks of the internal standards were diluted to the anticipated working concentrations in the calibrators (20 nM , approx. equivalent to 20-times LLOQ) and analyzed with the MRM method. At this concentration $7(S), 8(R), 17(S)$-TriHDHA-d5 (RvD1-d $)_{5}$ was contaminated with the unlabeled analyte at concentrations $>$ LLOQ. Therefore, we reduced the concentration of this IS by four-fold in the IS master mix and thus, no interference was found at the final calibrator concentration (5 nM).

Then, nine stock mixes ("master mixes", ESM Table S1) were prepared avoiding direct light radiation. The analytes assigned to each of these either differed in retention time or m / z, enabling an interference-free measurement in single ion monitoring (SIM) mode for every analyte in each master mix according to Hartung et al. (4). In total, two internal standard master
mixes, seven analyte master mixes and at the same time, working solutions ($3-5 \mu \mathrm{M}$) for each analyte (for later optimization, etc.), were prepared (ESM Table S1):

1.1 Standard operating procedure for the preparation of master mixes

Pre-arrangements

- Get enough ice boxes/cold packs
- Prepare cleaning solvents
- Prepare working stocks
- Add fresh MeOH to fresh vial (volume in ESM Table S1)
- Get the needed volumetric flasks (VF) and gas tight syringes (e.g. from Hamilton) ready, after they were checked for residues
- Put a bit of fresh MeOH in the clean VF
- Pipette the masters on ice
- Only take 5 single stock STD out of the $-80^{\circ} \mathrm{C}$ freezer at once

Master mix preparation

- Work in groups of two, all main steps are done by partner A, unless stated otherwise
- Warm the vial containing the single stock STD in the hand
- Vortex
- Draw the STD and set to correct volume with a gas tight syringe
- Show partner B the set volume
- Partner B checks it off the list or notes the actual volume
- Wipe the syringe tip with lint-free wipe (moistened with MeOH)
- Transfer volume to VF
- Give partner B the single stock STD
- Partner B: Prepare working stock
- Add $1 \mu \mathrm{~L}$ of single stock STD with pipette to prepared vial with MeOH
- Vortex
- Store on ice
- Close the single stock STD vial tightly
- Take next original vial of single stock STD and restart procedure
- Partner B: clean syringes with cleaning solvents
- 10 xACN I
- 10 x ACN II
- 10 x MeOH I
- $10 \times \mathrm{MeOH}$ II
- Dry syringe (move piston up and down)
- Change cleaning solvents after 5 STDs
- Wipe the syringe tip with lint-free wipe (moistened with MeOH)
- When all STDs are added to masters, warm VF with hand to RT
- Fill to mark with MeOH
- Mix master by turning flask upside down
- Transfer to flasks with screwcaps
- Store at $-80^{\circ} \mathrm{C}$

ESM Table S1 Preparation of master mixes and working stocks from single stock standards.

	Cayman Chemical item no.	Precursor FA	$\begin{gathered} \text { Q1 } \\ \mathrm{m} / \mathbf{z} \end{gathered}$	$\begin{aligned} & \text { RT } \\ & {[\mathrm{min}]} \end{aligned}$	single stock STD		master mix		$\begin{gathered} \text { working stock } \\ \text { volumes (STD + MeOH) }[\mu \mathrm{L}] \end{gathered}$
					$\begin{aligned} & \text { conc } \\ & {[\mu \mathrm{M}]} \end{aligned}$	vol [$\mu \mathrm{L}$]		total vol [mL]	
IS master I									
15(S)-HETE-d8	334720	ARA	327.2	19.88	304	32.9	5		
20-HETE-d6	390030	ARA	325.2	17.97	306	32.7	5		
(\pm)9(10)-DiHOME-d4	10009993	LA	317.2	14.84	314	31.9	5		
Leukotriene B_{4}-d d_{4}	320110	ARA	339.2	13.76	734	13.6	5	2	$1+100$
$5(S), 6(R), 15(S)$-TriHETE-d $\left.{ }^{(} L^{(L x A} 4-\mathrm{d}_{5}\right)$	10007737	ARA	356.3	10.09	280	35.8	5		
7(S),8(R), 17(S)-TriHDHA-d5 (RvD1-d5)	11182	DHA	380.3	10.19	262	9.5	1.25		
7(S),16(R),17(S)-TriHDHA-d5 (RvD2-d5)	11184	DHA	380.2	9.40	262	38.2	5		
IS master II									
15-deoxy- 112,14-PGJ2-d4 $^{\text {d }}$	318570	ARA	319.4	17.68	312	250			$1+100$
PGE ${ }_{2}$-d ${ }_{4}$	314010	ARA	355.2	8.88	2805	50			$1+600$
PGD 2 - d_{4}	312010	ARA	355.2	9.29	281	250	5	10	$1+100$
13,14-dihydro-15-keto-PGE ${ }_{2}$-d4	10010606	ARA	355.4	10.26	281	250			$1+100$
TxB2-d4	319030	ARA	373.3	7.66	267	250			$1+100$
Master I									
13,14-dihydro-15-keto-PGD2 MaxSpec	10007208	ARA	351.2	11.18	284	176			$1+100$
11-dehydro-2,3-dinor-TxB2	19510	ARA	339.3	6.89	294	170			$1+100$
2,3-dinor-TxB2	19050	ARA	341.2	5.68	292	171			$1+100$
PGD_{3}	12990	EPA	349.3	8.11	285	175			$1+100$
13,14-dihydro-15-keto-tetranor-PGD ${ }_{2}$	13100	ARA	297.2	6.56	335	149			$1+100$
15-keto-PGE ${ }_{1}$	13680	DGLA	351.3	9.96	500	100			$1+100$
PGD ${ }_{1}$	12000	DGLA	353.2	9.36	500	100	10	5	$1+100$
13,14-dihydro-15-keto-PGD1	10010425	DGLA	353.3	11.68	500	100			$1+100$
11-dehydro-TxB2	19500	ARA	367	9.02	1357	37			$1+300$
11-dehydro- TxB_{3}	19995	EPA	365.3	7.73	273	183			$1+100$
TxB3	19990	EPA	367.2	6.54	271	184			$1+100$
TxB2 MaxSpec	10007237	ARA	369.2	7.68	270	185			$1+100$
TxB1	10006610	DGLA	371.3	7.37	500	100			$1+100$

ESM Table S1 continued.

(1)	Cayman Chemical item no.	Precursor FA	$\begin{gathered} \text { Q1 } \\ \mathrm{m} / \mathrm{z} \end{gathered}$	$\begin{gathered} \text { RT } \\ {[\mathrm{min}]} \end{gathered}$	single conc [$\mu \mathrm{M}$]	STD vol [$\mu \mathrm{L}$]		mix total vol [mL]	working stock volumes (STD + MeOH) [$\mu \mathrm{L}$]
Master II									
LTB5	21110	EPA	333.3	11.95	299	167	10	5	$1+100$
2,3-dinor-TxB1	10006330	DGLA	343	5.17	290	172			
5(S),12(R),18(R)-TriHEPE (RvE1)	10007848	EPA	349.3	6.25	143	351			
5(S),6(R), 15(S)-TriHEPE (LxA5)	10011453	EPA	349.1	8.77	285	175			
15-keto-PGF ${ }_{2 a}$ MaxSpec	10007227	ARA	351.2	9.17	284	176			
5(S),6(S),15(S)-TriHETE (6(S)-LxA4)	10049	ARA	351.2	10.51	284	176			
7(R),14(S)-DiHDHA (Mar 1)	10878	DHA	359.1	13.60	277	180			
4(S),11(R), 17(S)-TriHDHA (RvD3)	13834	DHA	375.3	9.18	266	188			
Master III									
13,14-dihydro-15-keto-tetranor-PGE ${ }_{2}$	13101	ARA	297	7.32	335	149	10	5	$1+100$
15-keto-PGE ${ }_{2}$ MaxSpec	10007215	ARA	349.2	9.50	285	175			$1+100$
PGD ${ }_{2}$ MaxSpec	10007202	ARA	351.2	9.37	284	176			$1+100$
8-iso-PGE 2	14350	ARA	351.4	8.69	1500	33			$1+300$
5(S),14(R),15(S)-TriHEPE (LxB4)	90420	ARA	351.2	9.15	284	176			$1+100$
8 -iso-PGE ${ }_{1}$	13360	DGLA	353.4	8.84	1500	33			$1+300$
13,14-dihydro-PGE ${ }_{1}$	13610	DGLA	355.4	9.81	500	100			$1+100$
20-OH-PGE 2	14950	ARA	367.2	3.74	1357	37			$1+300$
7(S),16(R),17(S)-TriHDHA (RvD2)	10007279	DHA	375.3	9.45	266	188			$1+100$
1a,1b-dihomo-PGE 2	18665	ARA	379.4	11.40	1510	33			$1+300$
Master IV									
15-deoxy- $1212,14-P G J_{2}$ MaxSpec	10007235	ARA	315.2	17.73	316	158	10	5	$1+100$
20-HEPE	19322	EPA	317.2	16.76	314	159			$1+100$
2,3-dinor-11 -PGF $_{2 a}$	16530	ARA	325.3	5.93	306	163			$1+100$
$\triangle 12-\mathrm{PGJ} 2$	18550	ARA	333.3	11.89	2990	17			$1+600$
22-HDHA	19321	DHA	343.2	19.15	290	172			$1+100$
PGE ${ }_{3}$	14990	EPA	349.3	7.74	1427	35			$1+300$
11 1 -PGF ${ }_{2 \alpha}$ MaxSpec	10007224	ARA	353.3	7.82	282	177			$1+100$
11β-13,14-dihydro-15-keto $\mathrm{PGF}_{2 \alpha}$	16540	ARA	353.4	9.83	1410	35			$1+300$
13,14-dihydro-15-keto-PGF2a	10007226	ARA	353.3	10.28	282	177			$1+100$
13,14-dihydro-PGF 2 a	16660	ARA	355.4	9.53	500	100			$1+100$

	Cayman Chemical item no.	Precursor FA	$\begin{aligned} & \text { Q1 } \\ & m / z \end{aligned}$	$\begin{gathered} \mathrm{RT} \\ {[\mathrm{~min}]} \end{gathered}$	single stock STD		master mix		working stock volumes (STD + MeOH) [$\mu \mathrm{L}$]
					conc [$\mu \mathrm{M}$]	vol [$\mu \mathrm{L}$]		total vol [mL]	
Master V									
13,14-dihydro-15-keto-PGE2 MaxSpec	10007214	ARA	351.2	10.29	284	176			$1+100$
2,3-dinor-6-keto-PGF ${ }_{1 a}$	15120	DGLA	341.1	7.34	500	100			$1+100$
20-OH PGF 2α	16950	ARA	369.3	3.59	1350	37			$1+300$
PGE1	13010	DGLA	353.3	9.20	1500	33			$1+300$
13,14-dihydro-15-keto-PGE ${ }_{1}$	13650	DGLA	353.3	10.81	500	100	10	5	$1+100$
9,10-DiH stearic acid	28612	OL	315.2	17.29	1504	33	10	5	$1+300$
PGB1	11110	DGLA	335.4	12.27	1500	33			$1+300$
7(S),14(S)-DiHDHA (7-epi-Mar1)	13161	DHA	359.1	13.06	277	180			$1+100$
6,15-diketo-13,14-dihydro-PGF 1 1a	15270	DGLA	369.3	7.72	2699	19			$1+600$
PGE 2 MaxSpec	10007211	ARA	351.2	8.91	284	176			$1+100$
Master VI									
7(S),8(R),17(S)-tri-HDHA (RvD1) MaxSpec	25905	DHA	375.3	10.24	27	941	10	25	$1+100$
5(S),18(R)-DiHEPE (RvE2)	13827	EPA	333.2	11.27	299	84			
Master VII									
5(S),15(S)-DiHEPE (RvE4)	29590	EPA	333.2	11.85	299	84	10	2.5	$1+100$

ARA: arachidonic acid (20:4 n6)
DGLA: dihomo-gamma-linolenic acid (20:3 n6)
DHA: docosahexaenoic acid (22:6 n3)
EPA: eicosapentaenoic acid (20:5 n3)
LA: linoleic acid (18:2 n6)
OL: oleic acid (18:1 n9)

1.2 Verification of standard concentrations

Only 12 analytes were available as STD with verified concentrations, i.e. MaxSpec standards (Cayman Chemical, Ann Arbor, MI, USA). In order to check the concentrations of the remaining analytes in regular quality, their SIM areas were compared to those of the MaxSpec STD, assuming comparable ionization efficiency for similar chemical structures as described (4). For this, the master mixes were separately diluted to 100 nM and measured as triplicates in SIM mode using their Q1 m / z (ESM Table S 1). The mean SIM areas of structurally similar analytes were compared (under consideration of the actual volumes used for master preparation) and a correction factor was calculated if the difference between the analyte and the MaxSpec areas exceeded $\pm 30 \%$. This was the case for 21 analytes.

1.3 Preparation of dilution series for calibration

The calibration series was prepared by serial dilution as follows

- Work in groups of two, all main steps are done by partner A, unless stated otherwise
- Get enough ice boxes/cold packs
- Get the needed volumetric flasks (VF) ready after they were checked for residues (see ESM Table S2)
- Add small volume of fresh MeOH in the clean VF
- Add analyte master mixes/higher or concentrated calibrator (ESM Table S2)
- Warm the flasks containing the analyte master mixes/calibrator in the hand
- Vortex
- Draw the volume of the analyte master mixes/calibrator with a volumetric pipette
- Wipe the tip with lint-free wipe (moistened with MeOH)
- Transfer volume to VF which is stored on ice and gently shake
- Put analyte master mixes/calibrator back on ice immediately
- Partner B: Add IS
- Warm the flasks containing the IS master mixes in the hand
- Vortex
- Draw volumes of IS masters with gastight syringes (ESM Table S2)
- Wipe the tip with lint-free wipe (moistened with MeOH)
- Transfer volume to VF which is stored on ice and gently shake
- When all STDs are added to the VF, warm VF with hand to RT
- Fill to mark with MeOH
- CAVE: Calibrator 17: add exact volume of MeOH
- Mix calibrator by turning flask upside down
- Repeat procedure until 18 calibrators are prepared (ESM Table S2)
- Transfer each calibrator from VF to multiple vials
- Store at $-80^{\circ} \mathrm{C}$

ESM Table S2 Preparation of new calibration series using master mixes.

calibrator no.	Analyte conc [nM]	final vol [mL]	type of STD	vol STD [mL]	vol IS master [$\mu \mathrm{L}$]		vol MeOH [mL]	IS conc [nM]
					IS Master I	IS Master II		
18	1000	10	all masters	7×1	40	40	fill to mark	20
17	750	6.667	calibrator 18	5	7	7	1.65	20
16	500	25	all masters	7×1.25	100	100	fill to mark	20
15	250	20	calibrator 16	10	40	40		20
14	100	25	calibrator 16	5	80	80		20
13	50	25	calibrator 16	2.5	90	90		20
12	25	25	calibrator 15	2.5	90	90		20
11	10	25	calibrator 14	2.5	90	90		20
10	5	25	calibrator 13	2.5	90	90		20
9	2.5	25	calibrator 12	2.5	90	90		20
8	1	25	calibrator 11	2.5	90	90		20
7	0.75	20	calibrator 11	1.5	74	74		20
6	0.5	25	calibrator 10	2.5	90	90		20
5	0.25	25	calibrator 9	2.5	90	90		20
4	0.1	25	calibrator 8	2.5	90	90		20
3	0.05	20	calibrator 6	2	72	72		20
2	0.025	20	calibrator 5	2	72	72		20
1	0.01	20	calibrator 4	2	72	72		20

1.4 Preparation of RT mixture

Few analytes with interfering MS transitions could not be fully chromatographically separated and were therefore not added to the master mixes. However, their transitions were added to the targeted oxylipin metabolomics method and a mixture of these analytes was prepared (50 nM , ESM Table S3) in order to be able to monitor them in samples. This retention time mixture is regularly measured together with the calibration series.

ESM Table S3 Analytes in the retention time mix for identification.

Analyte	Cayman Item No.	$\begin{gathered} \text { precursor } \\ \text { FA } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Q1 } \\ m / z \end{gathered}$	$\begin{gathered} \mathrm{RT} \\ {[\mathrm{~min}]} \\ \hline \end{gathered}$	interfering oxylipin (RT [min])
$11 \beta-\mathrm{PGE}_{2}$	14510	ARA	351.2	9.11	LxB_{4} (9.15)
15-keto-PGF 1a $^{\text {MaxSpec }}$	25902	DGLA	353.2	9.46	PGD1 (9.36)
8-iso-15-keto-PGE 2	14390	ARA	349.2	9.47	15-keto-PGE 2 (9.50)
$\Delta 12-\mathrm{PGD}_{2}$	12650	ARA	351.2	8.67	8-iso-PGE2 (8.69) + PGE2 (8.91)
$\begin{aligned} & 5(S), 6(R), 15(R)- \\ & \text { TriHETE }\left(15(R)-\text { LxA }_{4}\right) \end{aligned}$	90415	ARA	351.2	10.22	LxA_{4} (10.23)
15(R)-PGD2	10118	ARA	351.2	9.45	PGD2 (9.37)
15(R)-PGE 2	14710	ARA	351.2	8.67	PGE2 (9.01)
15(R)-PGF2a	16740	ARA	353.2	8.48	PGF 2α (8.65)
$\begin{aligned} & \text { 7(S),8(R),17(R)- } \\ & \text { TriHDHA (17(R)-RvD1) } \end{aligned}$	13060	DHA	375.3	10.35	7(S),8(R),17(S)-TriHDHA (RvD1; 10.24)
$\begin{aligned} & 4(S), 11(R), 17(R)- \\ & \text { TriHDHA (17(R)-RvD3) } \end{aligned}$	9002880	DHA	375.3	9.12	4(S),11(R),17(S)-TriHDHA (RvD3; 9.18)
8-iso-15(R)-PGF ${ }_{2 a}$	16395	ARA	353.2	8.48	$\mathrm{PGF}_{2 \alpha}(8.65)$

ARA: arachidonic acid (20:4 n6)
DGLA: dihomo-gamma-linolenic acid (20:3 n6)
DHA: docosahexaenoic acid (22:6 n3)

The final targeted LC-MS/MS based oxylipin metabolomics method thus allows to quantitatively measure 239 oxylipins (using 29 IS) derived from twelve different polyunsaturated fatty acid precursors formed via the three enzymatic branches of the ARA cascade as well as autoxidation:

ESM Table S4 Oxylipins covered by the targeted oxylipin metabolomics method.

precursor PUFA	PUFA class	oxylipin	$\begin{gathered} \text { sensitivity } \\ \text { LLOQ } \\ {[\mathrm{nM}]^{11}} \\ \hline \end{gathered}$
Oleic acid (18:1 n-9)	epoxy-PUFA	9(10)-Ep-stearic acid	0.5
		trans-9(10)-Ep-stearic acid	0.5
	vic dihydroxy-PUFA	erythro-9,10-DiH-stearic acid	0.50
		threo-9,10-DiH-stearic acid	0.50
Linoleic Acid (LA; 18:2 n-6)	hydroxy-PUFA	9-HODE	0.35
		10-HODE	0.076
		12-HODE	0.05
		13-HODE	0.25
		15-HODE	0.18
	oxo-PUFA	9-oxo-ODE	0.5
		13-oxo-ODE	0.5
	epoxy-PUFA	9(10)-EpOME	0.2
		trans-9(10)-EpOME	0.2
		12(13)-EpOME	0.037
		trans-12(13)-EpOME	0.037
	vic dihydroxy-PUFA	9,10-DiHOME	0.01
		12,13-DiHOME	0.029
	misc	9,10,11-TriHOME	0.1
		9,10,13-TriHOME	0.1
		9,12,13-TriHOME	0.05
		EKODE	2)
alpha-Linolenic Acid (ALA;18:3 $n-3$)	hydroxy-PUFA	9-HOTrE	0.25
		13-HOTrE	0.5
	oxo-PUFA	9-oxo-OTrE	0.25
		13-0xo-OTrE	0.1
	epoxy-PUFA	9(10)-EpODE	0.116
		12(13)-EpODE	0.33
		15(16)-EpODE	0.185
		trans-9(10)-EpODE	0.116
		trans-12(13)-EpODE	0.33
		trans-15(16)-EpODE	0.185
	vic dihydroxy-PUFA	9,10-DiHODE	0.025
		12,13-DiHODE	0.25
		15,16-DiHODE	0.45
	misc	9,10,11-TriHODE	0.05
		9,10,13-TriHODE	1
		9,12,13-TriHODE	0.1
gamma-Linolenic Acid (GLA; 18:3 n-6)	hydroxy-PUFA	13- γ-HOTrE	2.5
dihomo-gamma-Linolenic Acid (DGLA; 20:3 n-6)	hydroxy-PUFA	8-HETrE	0.5
		12-HETrE	0.25
		15-HETrE	0.1

	multihydroxy-PUFA	LTB_{3}	0.25
	epoxy-PUFA	14(15)-EpEDE	0.05
	prostanoids	PGB1	0.10
		PGD1	0.10
		$\begin{aligned} & \text { 13,14-dihydro-15-keto- } \\ & \text { PGD }_{1} \end{aligned}$	0.50
		PGE_{1}	0.10
		13,14-dihydro PGE 1	0.35
		13,14-dihydro-15-ketoPGE 1	0.50
		15-keto PGE_{1}	5.00
		$\mathrm{PGF}_{1 \alpha}$	0.05
		15-keto-PGF ${ }_{1 a}$	
		TxB1	0.80
	isoprostanes	8-iso-PGE ${ }_{1}$	0.50
		$\begin{aligned} & 15-\mathrm{F}_{1 \text { t-IsoP }}(8 \text {-iso- } \\ & \text { PGF } \left._{1 \alpha}\right) \end{aligned}$	1
Mead acid (20:3 n-9)	hydroxy-PUFA	5-HETrE	0.025
Arachidonic Acid (ARA;	hydroperoxy-PUFA	5-HpETE	2)
20:4 n-6)		12-HpETE	2)
		15-HpETE	${ }^{2)}$
	hydroxy-PUFA	5-HETE	0.035
		8-HETE	0.23
		9-HETE	0.4
		11-HETE	0.044
		12-HETE	0.25
		15-HETE	0.22
		16-HETE	0.25
		17-HETE	0.25
		18-HETE	0.25
		19-HETE	2.5
		20-HETE	0.5
		tetranor-12-HETE	0.05
		12-HHTrE	0.5
	multihydroxy-PUFA	5(S),12(S)-DiHETE	0.05
		5(S),15(S)-DiHETE	0.1
		8(S),15(S)-DiHETE	1.26
		LTB4	0.1
		6-trans-LTB4	0.25
		6-trans-12-epi-LTB4	0.25
		5(S),6(R)-DiHETE (ARA)	0.039
		5(S),6(S)-DiHETE (ARA)	0.045
		$20-\mathrm{OH}-\mathrm{LTB}_{4}$	0.05
		20-COOH-LTB4	0.17
		18-COOH-dinor-LTB4	1.0
		12-oxo-LTB4	0.25
		$\begin{aligned} & \text { 5(S),6(R),15(S)-TriHETE } \\ & \left(\text { LxA }_{4}\right) \end{aligned}$	0.25
		$\begin{aligned} & \text { 5(S),6(S),15(S)-TriHETE } \\ & \left(6(S)-\text { LxA }_{4}\right) \end{aligned}$	1.00
		$\begin{aligned} & 5(S), 6(R), 15(R) \text {-TriHETE } \\ & (15(R) \text {-LxA4 }) \end{aligned}$	2)
		$\begin{array}{\|l} \hline 5(S), 14(R), 15(S)- \\ \text { TriHEPE (LxB4) } \\ \hline \end{array}$	0.75
	oxo-PUFA	5-0xo-ETE	0.75
		12-oxo-ETE	1.0

		15-oxo-ETE	0.1
	epoxy-PUFA	5(6)-EpETrE	2)
		8(9)-EpETrE	0.5
		11(12)-EpETrE	0.1
		14(15)-EpETrE	0.25
		trans-5(6)-EpETrE	0.5
		trans-8(9)-EpETrE	0.5
		trans-11(12)-EpETrE	0.1
		trans-14(15)-EpETrE	0.25
	vic hydroxy-PUFA	5,6-DiHETrE	0.1
		8,9-DiHETrE	0.068
		11,12-DiHETrE	0.064
		14,15-DiHETrE	0.025
	prostanoids	PGB_{2}	0.05
		PGD_{2}	1.00
		15(R)-PGD 2	${ }^{2)}$
		$\Delta 12-\mathrm{PGD}_{2}$	2)
		13,14-dihydro-15-keto PGD 2	0.50
		13,14-dihydro-15-keto-tetranor-PGD2	1.55
		PGE_{2}	0.50
		15(R)-PGE2	2)
		$11 \beta-\mathrm{PGE}_{2}$	${ }^{2)}$
		20-OH-PGE 2	1.14
		15-keto PGE_{2}	0.50
		13,14-dihydro-15-ketoPGE 2	25.00
		13,14-dihydro-15-keto-tetranor-PGE 2	0.79
		1a,1b-dihomo PGE 2	0.06
		$\mathrm{PGF}_{2 a}$	0.5
		15(R)--PGF ${ }_{2 \alpha}$	2)
		$11 \beta-\mathrm{PGF}_{2 \alpha}$	0.75
		20-OH PGF 2 a	1.59
		13,14-dihydro-PGF ${ }_{2 a}$	10.00
		15-keto PGF 2 a	0.75
		13,14-dihydro-15-keto$\mathrm{PGF}_{2 a}$	1.00
		11ß-13,14-dihydro-15keto PGF $_{2 a}$	45.62
		2,3-dinor-11 β-PGF ${ }_{2 \alpha}$	1.31
		6-keto-PGF ${ }_{1 \alpha}$	0.96
		2,3-dinor-6-keto PGF ${ }_{1 \alpha}$	0.25
		6,15-diketo-13,14dihydro PGF $_{1 a}$	75.82
		PGJ_{2}	0.027
		$\Delta 12-\mathrm{PGJ} 2$	1.28
		15-deoxy- ${ }^{12,14}$-PGJ ${ }_{2}$	1.00
		TxB2	0.50
		2,3-dinor-TxB2	2.50
		2,3-dinor-TxB ${ }_{1}$	2.50
		11-dehydro-2,3-dinorTxB2	0.76
		11-dehydro-TxB2	0.31
	isoprostanes	8-iso-PGE2	0.25
		8-iso-15-keto PGE_{2}	2)
		$\begin{aligned} & 15-\mathrm{F}_{2 \text { t }} \text { IsoP (} 8 \text {-iso- } \\ & \mathrm{PGFF}_{2 a} \text {) } \end{aligned}$	0.25
		8-iso-15(R)--PGF ${ }_{2 a}$	2)

		$\begin{aligned} & 5(R, S)-5-\mathrm{F}_{2 \mathrm{c}}-\mathrm{IsoP}(8,12- \\ & \text { iso-iPF } \end{aligned}$	0.5
		$\begin{aligned} & \text { 13,14-dihydro-15-oxo- } \\ & \text { 15-F2t-IsoP } \end{aligned}$	0.50
		15-oxo-15-F2t-IsoP	0.5
		$\begin{aligned} & \text { 2,3-dinor-15-(R,S)-15- } \\ & \text { F } 2 \text { till }^{2} \text { - } \end{aligned}$	0.25
			0.25
	misc	20-COOH-ARA	0.25
		11,12,15-TriHETrE	0.25
Eicosapentaenoic Acid (EPA; 20:5 n-3)	hydroxy-PUFA	5-HEPE	0.06
		8-HEPE	0.06
		9-HEPE	0.25
		11-HEPE	0.062
		12-HEPE	0.1
		15-HEPE	0.1
		18-HEPE	0.1
		19-HEPE	0.1
		20-HEPE	0.50
	multihydroxy-PUFA	$\begin{aligned} & \text { 5(S),12(R),18(R)- } \\ & \text { TriHEPE (RvE1) } \\ & \hline \end{aligned}$	0.50
		$\begin{aligned} & \text { 5,12,12-TriHEPE (trans- } \\ & \text { RvE1) } \end{aligned}$	${ }^{2)}$
		$\begin{aligned} & \text { 5(S),18(R)-DiHEPE } \\ & \text { (RvE2) } \end{aligned}$	${ }^{2)}$
		$\begin{aligned} & \hline 17(R), 18(R) \text {-DiHEPE } \\ & (\text { RvE3 }) \end{aligned}$	${ }^{2)}$
		$\begin{aligned} & \text { 17(R),18(S)-DiHEPE } \\ & \text { (18(S)-RvE3) } \end{aligned}$	1.26
		$\begin{aligned} & \text { 5(S),15(S)-DiHEPE } \\ & \text { (RvE4) } \end{aligned}$	0.50
		$\begin{aligned} & 5(S), 6(R), 15(S)-T r i H E P E \\ & \left(L \times A_{5}\right) \end{aligned}$	2.50
		LTB5	0.50
		5,12-diHEPE	${ }^{2}$
		12,18-diHEPE	$\left.{ }^{2}\right)$
		5,x,18-triHEPE 1	2)
		5,x,18-triHEPE 2	2)
	epoxy-PUFA	5(6)-EpETE	${ }^{2)}$
		8(9)-EpETE	0.75
		11(12)-EpETE	0.25
		14(15)-EpETE	0.25
		17(18)-EpETE	0.75
		trans-5(6)-EpETE	0.75
		trans-8(9)-EpETE	0.75
		trans-11(12)-EpETE	0.25
		trans-14(15)-EpETE	0.25
		trans-17(18)-EpETE	0.75
	vic hydroxy-PUFA	5,6-DiHETE	0.3
		8,9-DiHETE	0.100
		11,12-DiHETE	0.05
		14,15-DiHETE	0.05
		17,18-DiHETE	0.11
	prostanoids	PGB_{3}	0.75
		PGD_{3}	0.75
		PGE_{3}	0.73
		PGF3a	1
		Δ^{17}-6-keto-PGF ${ }_{1 \alpha}$	0.50

		TxB3	4.30
		11-dehydro-TXB3	1.84
	isoprostanes	$\begin{aligned} & \text { 15-F-F }{ }_{3 t-I} \text { IsoP (8-iso- } \\ & \mathrm{PGFF}_{3_{c}} \text {) } \end{aligned}$	2.5
	misc	12-OH-17(18)-EpETE	1.26
Docosapentaenoic Acid (DPA; 22:5 n-3)	multihydroxy-PUFA	7(S),17(S)-DiH-n3DPA	0.75
	oxo-PUFA	17-oxo-n3DPA	5
Docosahexaenoic Acid (DHA; 22:6 n-3)	hydroxy-PUFA	4-HDHA	0.1
		7-HDHA	0.1
		8-HDHA	0.1
		10-HDHA	0.05
		11-HDHA	0.25
		13-HDHA	0.1
		14-HDHA	0.14
		16-HDHA	0.25
		17-HDHA	0.9
		20-HDHA	0.25
		21-HDHA	0.25
		22-HDHA	1.00
	multihydroxy-PUFA	$\begin{aligned} & \text { 7(R),14(S)-DiHDHA } \\ & \text { (MaR1) } \end{aligned}$	1.00
		$7(S), 14(S)-\text { DiHDHA }(7-$ epi-MaR1)	0.75
		$\begin{aligned} & 13(R), 14(S) \text {-diHDHA } \\ & \text { (MaR2) } \end{aligned}$	0.25
		$\begin{aligned} & 7(S), 8(R), 17(S) \text {-TriHDHA } \\ & \text { (RvD1) } \end{aligned}$	0.10
		$\begin{aligned} & \text { 7(S),8(R),17(R)- } \\ & \text { TriHDHA (17(R)-RvD1) } \\ & \hline \end{aligned}$	2)
		$\begin{aligned} & \text { 7(S),16(R),17(S)- } \\ & \text { TriHDHA (RvD2) } \\ & \hline \end{aligned}$	1.00
		$\begin{aligned} & \text { 4(S),11(R),17(R)-} \\ & \text { TriHDHA (17(R)-RvD3) } \end{aligned}$	${ }^{2)}$
		$\begin{aligned} & \text { 4(S),11(R),17(S)- } \\ & \text { TriHDHA (RvD3) } \end{aligned}$	0.50
		4(S),5(R),17(R,S)-RvD4	0.25
		$\begin{aligned} & 7(S), 17(S) \text {-DiHDHA } \\ & \text { (RvD5) } \end{aligned}$	0.25
		$\begin{aligned} & 10(S), 17(S)-\mathrm{DiHDHA} \\ & (\mathrm{PDx}) \end{aligned}$	0.39
	oxo-PUFA	4-oxo-DHA	0.25
		17-oxo-DHA	10
	epoxy-PUFA	4(5)-EpDPE	${ }^{2)}$
		7(8)-EpDPE	0.65
		10(11)-EpDPE	0.025
		13(14)-EpDPE	0.1
		16(17)-EpDPE	0.25
		19(20)-EpDPE	0.5
		trans-4(5)-EpDPE	0.65
		trans-7(8)-EpDPE	0.65
		trans-10(11)-EpDPE	0.025
		trans-13(14)-EpDPE	0.1
		trans-16(17)-EpDPE	0.25
		trans-19(20)-EpDPE	0.5
	vic dihydroxy-PUFA	4,5-DiHDPE	0.65
		7,8-DiHDPE	0.5

		10,11-DiHDPE	0.1
		13,14-DiHDPE	0.1
		16,17-DiHDPE	0.1
		19,20-DiHDPE	0.5
Adrenic acid (AdA; 22:4 n-6)	prostanoids	1a,1b-dihomo-PGF 2 a	0.75

${ }^{1)}$ lower limit of quantification (LLOQ) set to lowest calibration standards with a signal to noise ratio ≥ 5 and accuracy $\pm 20 \%$
${ }^{2)}$ relative quantification, see ESM Table S14 as separate file

Abbreviations:

AdA	adrenic acid
ALA	alpha-linolenic acid
ARA	arachidonic acid
DGLA	dihomo-gamma linolenic acid
DHA	docosahexaenoic acid
DiH	dihydroxy
DiHDHA	dihydroxydocosahexaenoic acid
DiHDPE	dihydroxydocosapentaenoic acid
DiHEPE	dihydroxyeicosapentaenoic acid
DiHETE	dihydroxyeicosatetraenoic acid
DiHETrE	dihydroxyeicosatrienoic acid
DiHODE	dihydroxyoctadecadienoic acid
DiHOME	dihydroxyoctadecamonoenoic acid/ dihydroxyoctadecenoic acid
DPA	docosapentaenoic acid
EKODE	epoxy-keto-octadecadienoic acid
Ep	epoxy
EPA	eicosapentaenoic acid
EpDoTrE	epoxydocosatrienoic acid
EpDPE	epoxydocosapentaenoic acid
EpEDE	epoxyeicosadienoic acid
EpETE	epoxyeicosatetraenoic acid
EpETrE	epoxyeicosatrienoic acid
EpETrE	epoxyeicosatrienoic acid
EpODE	epoxyoctadecadienoic acid
EpOME	epoxyoctadecamonoenoic acid/ epoxyoctadecenoic acid
ETE	eicosatetraenoic acid
FA	fatty acid
GLA	gamma-linolenic acid
HDHA	hydroxydocosahexaenoic acid
HEPE	hydroxyeicosapentaenoic acid
HETE	hydroxyeicosatetraenoic acid
HETrE	hydroxyeicosatrienoic acid
HHTrE	hydroxyheptatrienoic acid
HOTrE	hydroxyoctadecatrienoic acid
HpETE	hydroperoxyeicosatetraenoic acid
IsoP/ iP	isoprostane
LA	linoleic acid
LT	leukotriene
Lx	lipoxin
MaR	maresin
ODE	octadecadienoic acid
Oleic	oleic acid
OTrE	octadecatrienoic acid
P	protectin
PG	prostaglandin
Rv	resolvin
TriHDHA	trihydroxydocosahexaenoic acid
TriHEPE	trihydroxyeicosapentaenoic acid
TriHETE	trihydroxyeicosatetraenoic acid
TriHETrE	trihydroxyeicosatrienoic acid
TriHODE	trihydroxyoctadecadienoic acid
TriHOME	trihydroxyoctadecamonoenoic acid/ trihydroxyoctadecenoic acid
Tx	thromboxane

2 Proteomics analysis

2.1 Preparation of the proteomics calibration series

For the quantification of protein abundance levels, two calibration series were prepared: for all COX/LOX peptides and for the peptides of the housekeeping proteins (Table 1, Table 2, ESM Table S7). The calibrations were prepared using unlabeled and heavy labeled (lys: uniformly labeled (U)- ${ }^{13} \mathrm{C}_{6} ; \mathrm{U}^{-15} \mathrm{~N}_{2}$; arg: $\mathrm{U}-{ }^{13} \mathrm{C}_{6} ; \mathrm{U}^{-15} \mathrm{~N}_{4}$) peptide standards as internal standards from JPT Peptides (Berlin, Germany). The absolute concentration of selected COX/LOX peptides (DCPTPMGTK, FDPELLFNK, LILIGETIK, DDGLLVWEIAR, TGTLAFER, LWEIIAR, EITEIGLQGAQDR, ELLIVPGQVVDR, VSTGEAFGAGTWDK) in the calibration solution was validated with unlabeled AQUA peptide standards ($>97 \%$ purity, 25$30 \%$ concentration precision, Thermo Life Technologies GmbH, Darmstadt, Germany). The concentration was corrected in case of deviations $>10 \%$ between both standards (ESM Table S5).

ESM Table S5 Correction factors for peptides. The correction factors were calculated between the peptide standards from JPT Peptides and Thermo Life Technologies GmbH (AQUA peptide standards).

Peptide	correction factor
LILIGETIK	0.53
FDPELLFNK	0.84
DCPTPMGTK	0.31
DDGLLVWEAIR	0.49
TGTLAFER	1.47
LWEIIAR	-
EITEIGLQGAQDR	1.13
VSTGEAFGAGTWDK	-
ELLIVPGQVVDR	0.88
- : no correction factor needed	

ESM Table S6 Proteotypic peptides for targeted proteomics method. The proteotypic peptides (PTPs) were selected from an in silico tryptic digest of 5-LOX, FLAP, 12-LOX, 15-LOX, 15-LOX-2 and CYC1. The peptides were selected based on peptide length ($7-22 \mathrm{aa}$), uniqueness, cleavage probability calculated with peptide cutter ($\geq 90 \%$) or cleavage prediction with decision trees (CP-DT; $\geq 70 \%$), occurrence of single nucleotide polymorphisms (SNPs), variation in splice variants or postranslational modifications (PTMs), as well as unfavored amino acids ($\mathrm{C}, \mathrm{M}, \mathrm{N}, \mathrm{Q}, \mathrm{W} ; \mathrm{max} .2$) and predicted retention time (RT; $3-30 \mathrm{~min}$).

Peptides	Position	[M+H] ${ }^{+}$	Length [aa]	Uniqueness ${ }^{\text {a }}$	C-terminal cleavage probability ${ }^{\text {b }}$ [\%]	Overall cleavage probability ${ }^{\text {c }}$ [\%]	SNPs ${ }^{\text {d }}$	Variation in splice variants ${ }^{\text {e }}$	PTMs ${ }^{\text {f }}$	Unfavored aa	Pred. RT [min] ${ }^{\text {g }}$
5-Lipoxygenase (5-LOX, P09917, gene: ALOX5)											
DDGLLVWEAIR	473-483	1286.7	11	unique	100\%	98\%		differs in isoform delta-10-13	-	$1 \times \mathrm{W}$	23.50
NLEAIVSVIAER	641-652	1313.7	12	unique	100\%	97\%		missing in isoform delta-10-13 \& missing in alpha-10	-	$1 \times N$	20.40
5-Lipoxygenase-activating protein (FLAP, P20292, gene: ALOX5AP)											
TGTLAFER	45-52	894.0	8	unique	94\%	98\%	-	-	-	-	10.80
YFVGYLGER	97-105	1103.2	9	unique	100\%	97\%	-	-	-	-	15.50
12-Lipoxygenase (12-LOX, P18054, gene: ALOX12)											
LWEIIAR	467-473	900.1	7	unique	100\%	97\%	-	-	-	$1 \times \mathrm{W}$	16.70
AVLNQFR	622-628	847.0	7	unique	100\%	90\%	-	-	-	$1 \times \mathrm{N} ; 1 \times \mathrm{Q}$	10.40
15-Lipoxygenase (15-LOX, P16050, gene: ALOX15)											
EITEIGLQGAQDR	501-513	1429.7	13	unique	100\%	97\%	-	-	-	$2 \times Q$	12.80
GFPVSLQAR	514-522	974.5	9	unique	100\%	96\%	-	-	-	$1 \times$ Q	12.00
15-Lipoxygenase-2 (15-LOX-2, O15296, gene: ALOX 15B)											
VSTGEAFGAGTWDK	7-21	1425.5	14	unique	90\%	94\%	-	-	-	$1 \times \mathrm{W}$	13.40
ELLIVPGQVVDR	418-429	1337.6	12	unique	100\%	95\%		missing in isoform O15296-2 (15-LOX2sv-b) and O15296-4 (15-LOX2sv-a)	-	$1 \times$ Q	17.40
Cytochrome C1 (CYC1, P08574, gene: CYC1)											
HLVGVCYTEDEAK*	134-146	1520.7	13	unique	82\%	92\%	-	-	-	$1 \times \mathrm{C}$	8.70
DVCTFLR*	269-275	910.4	7	unique	100\%	99\%	-	-	-	$1 \times \mathrm{C}$	13.00

 (11)
-: not reported; *: carbamidomethylated cys

ESM Table S7 Parameters for analysis of housekeeper peptides via LC-MS/MS. (A) Unlabeled and (B) heavy labeled (lys: U- ${ }^{13} \mathrm{C}_{6}$; U- ${ }^{15} \mathrm{~N}_{2}$; arg: U- ${ }^{13} \mathrm{C}_{6}$; U${ }^{15} \mathrm{~N}_{4}$) peptide data for housekeeper peptides GAPDH, PPIB, β - $/ \gamma$-actin, CYC 1 , updated from Hartung et al. (12). For each peptide, different CAD fragment ions used for qualification and quantification (top) with their Q1 and Q3 m/z are shown with retention time (RT , mean $\pm \mathrm{SD}, \mathrm{n}=12$), relative ratios to quantifier transition as well as collision energies (CE). For unlabeled peptides (A) linear calibration range is shown for quantifier transitions, as well as the transitions of the corresponding heavy labeled peptides used as internal standards (IS) for the quantification, limits of detection (LOD) and lower limits of quantification (LLOQ). Accuracy of calibrators was within a range of $\pm 20 \%$. The spiking levels of the heavy labeled peptides (concentrations in vial) are in shown (B).
(A)

Gene / Protein (UniProtKB No.)	Peptide	Transitions	$\begin{gathered} \text { Q1 } \\ \mathrm{m} / \mathrm{z} \end{gathered}$	$\begin{aligned} & \text { Q3 } \\ & \mathrm{m} / \mathrm{z} \end{aligned}$	RT [min]	Rel. Ratio to quantifier [\%]	$\begin{aligned} & \text { CE } \\ & \text { (V) } \end{aligned}$	IS Transitions	Calibration Range [$\mu \mathrm{M}$]		
ACTB \& ACTG1 / β-Actin \& p -Actin (P60709 / P63261)	VAPEEHPVLLTEAPLNPK	$\mathrm{M}^{3+} \rightarrow \mathrm{y}^{+}$	652.0	568.4	15.7 ± 0.04		45	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{6}{ }^{+}$	0.01	- 10	
		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{16}{ }^{++}$	652.0	892.5		86	38				
		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{8}{ }^{+}$	652.0	869.5		45	42				
	DLYANTVLSGGTTMYPGIADR	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{6}{ }^{+}$	739.0	628.3	20.66 ± 0.01		47	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{6}{ }^{+}$	0.01	- 10	
		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{7}{ }^{+}$	739.0	791.4		64	40				
		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{8}{ }^{+}$	739.0	922.5		31	38				
PPIB / Peptidyl-prolyI cis-trans isomerase B (PPIB; P23284)	IGDEDVGR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}^{+}$	430.7	747.3	5.99 ± 0.01		26	$\mathrm{M}^{2+} \rightarrow \mathrm{y}^{+}$	0.01	- 10	
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	430.7	690.3		27	26				
		$\mathrm{M}^{2+} \rightarrow \mathrm{ys}^{+}$	430.7	575.3		19	31				
	VLEGMEVVR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	516.3	819.4	13.69 ± 0.02		33	$\mathrm{M}^{2+} \rightarrow \mathrm{y}^{+}{ }^{+}$	0.01-7.5		
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	516.3	690.4		41	36				
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	516.3	932.5		12	36				
GAPDH /	VPTANVSVVDLTCR	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{5}{ }^{+}$	510.9	664.3	15.75 ± 0.02		31	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{5}{ }^{+}$	$0.01-10$		
Glyceraldehyde-3-		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{3}{ }^{+}$	510.9	436.2		48	29				
phosphate		$\mathrm{M}^{3+} \rightarrow \mathrm{y4}^{+}$	510.9	549.3		50	37				
dehydrogenase	GALQNIIPASTGAAK	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	706.4	702.4	15.10 ± 0.03		43	$\mathrm{M}^{2+} \rightarrow \mathrm{yg}^{+}$	0.01	- 10	
(GAPDH; P04406)		$\mathrm{M}^{2+} \rightarrow \mathrm{yg}^{+}$	706.4	815.5		38	46				
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{11}{ }^{+}$	706.4	1042.6		19	43				
CYC1 / Cytochrome c1 (CYC1; P08574)	HLVGVCYTEDEAK	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{6}{ }^{+}$	507.6	692.3	10.42 ± 0.07		22	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{6}{ }^{+}$	0.01	- 10	
		$\mathrm{M}^{3+} \rightarrow \mathrm{y}^{+}{ }^{+}$	507.6	855.4		82	16				
		$\mathrm{M}^{3+} \rightarrow \mathrm{b}_{6}{ }^{+}$	507.6	666.3		58	20				
	DVCTFLR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	455.7	696.4	14.86 ± 0.03		20	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	0.01-10		
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{++}$	455.7	348.7		45	18				
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{4}{ }^{+}$	455.7	536.3		40	22				

(B)								
Gene / Protein (UniProtKB No.)	Peptide	Transitions	$\begin{gathered} \text { Q1 } \\ \mathrm{m} / \mathrm{z} \\ \hline \end{gathered}$	$\begin{gathered} \text { Q3 } \\ \mathrm{m} / \mathrm{z} \\ \hline \end{gathered}$	RT [min]	Rel. Ratio to quantifier [\%]	$\begin{aligned} & \text { CE } \\ & \text { (V) } \\ & \hline \end{aligned}$	Spiking level in vial [nM]
ACTB \& ACTG1 I β-Actin \& γ-Actin (P60709 / P63261)	VAPEEHPVLLTEAPLNPK	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{6}{ }^{+}$	654.7	647.4	15.7 ± 0.04		30	100
		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{7}{ }^{+}$	654.7	776.4		98	30	
		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{2}{ }^{+}$	654.7	252.2		81	45	
	DLYANTVLSGGTTMYPGIADR	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{6}{ }^{+}$	742.4	638.3	20.66 ± 0.01		30	100
		$\mathrm{M}^{3+} \rightarrow \mathrm{y}^{+}{ }^{+}$	742.4	801.4		50	28	
		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{8}{ }^{+}$	742.4	932.5		20	28	
PPIB / Peptidyl-prolyI cis-trans isomerase B (PPIB; P23284)	IGDEDVGR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	435.7	757.3	5.99 ± 0.01		21	50
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	435.7	700.3		31	21	
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	435.7	585.3		17	26	
	VLEGMEVVR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}^{+}{ }^{+}$	521.3	829.4	13.69 ± 0.02		23	50
		$\mathrm{M}^{2+} \rightarrow \mathrm{yb}^{+}{ }^{+}$	521.3	700.4		40	26	
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	521.3	942.5		13	26	
GAPDH / Glyceraldehyde-3phosphate dehydrogenase (GAPDH; P04406)	VPTANVSVVDLTCR	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{5}{ }^{+}$	514.3	674.3	15.75 ± 0.02		21	50
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	770.9	674.3		5	40	
		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{3}{ }^{+}$	514.3	446.2		46	19	
	GALQNIIPASTGAAK	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{9}{ }^{+}$	710.4	823.5	15.10 ± 0.03		31	50
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{11}{ }^{+}$	710.4	1050.6		40	33	
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{10}{ }^{+}$	710.4	936.6		22	33	
CYC1 / Cytochrome c1 (CYC1; P08574)	HLVGVCYTEDEAK	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{6}{ }^{+}$	510.2	700.3	10.42 ± 0.07		22	50
		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{7}{ }^{+}$	510.2	863.4		80	16	
		$\mathrm{M}^{3+} \rightarrow \mathrm{b}_{6}{ }^{+}$	510.2	666.3		61	20	
	DVCTFLR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	460.7	706.4	14.86 ± 0.03		20	50
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}^{++}$	460.7	353.7		40	18	
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}^{+}{ }^{+}$	460.7	546.3		36	22	

ESM Table S8 Identification of peptides. Area ratios between quantifier and qualifier transitions in (A) unlabeled and (B) heavy labeled peptide standards $(\mathrm{n}=12-23)$ and samples $(\mathrm{n}=12-29$; human macrophages derived from primary blood monocytic cells). Shown are mean \pm SD in $\%$ of quantifier transition. All data was obtained by LCMS/MS based targeted proteomics.

		(A) Unabeled peptides					(B) Heavy labeled peptides				
			Standards		Samples			Standards		Samples	
		Transitions	Mean	SD	Mean	SD	Transitions	Mean	SD	Mean	SD
COX-1	DCPTPMGTK	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	100		100		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	100		100	
		$\mathrm{M}^{2+} \rightarrow \mathrm{b}_{2}{ }^{+}$	59	4	57	6	$\mathrm{M}^{2+} \rightarrow \mathrm{b}_{2}{ }^{+}$	59	1	58	4
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	43	3	42	5	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{++}$	17	0.4	17	1
	AEHPTWGDEQLFQTTR	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{5}{ }^{+}$	100		100		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{5}{ }^{+}$	100		100	
		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{4}{ }^{+}$	57	7	59	6	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{4}{ }^{+}$	53	1	55	1
		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{6}{ }^{+}$	55	5	58	9	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{6}{ }^{+}$	50	2	50	2
COX-2	FDPELLFNK	$\mathrm{M}^{2+} \rightarrow \mathrm{y}^{++}$	100		100		$\mathrm{M}^{2+} \rightarrow \mathrm{y}^{++}$	100		100	
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}^{+}{ }^{+}$	36	2	34	1	$\mathrm{M}^{2+} \rightarrow \mathrm{y}^{+}$	34	0.4	33	1
		$\mathrm{M}^{2+} \rightarrow \mathrm{b}_{2}{ }^{+}$	25	2	22	4	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{4}{ }^{+}$	6	0.1	6	0
	NAIMSYVLTSR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	100		100		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	100		100	
		$\mathrm{M}^{2+} \rightarrow \mathrm{b}_{3}{ }^{+}$	92	23	82	7	$\mathrm{M}^{2+} \rightarrow \mathrm{b}_{3}{ }^{+}$	92	3	84	7
		$\mathrm{M}^{2+} \rightarrow \mathrm{yg}_{9}{ }^{+}$	43	6	38	6	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	70	2	69	6
COX-1/2	LILIGETIK	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	100		100		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	100		100	
		$\mathrm{M}^{2+} \rightarrow \mathrm{b}_{2}{ }^{+}$	62	4	61	5	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	23	2	23	1
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	30	2	47	22	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	4	0.1	5	0.3
5-LOX	DDGLLVWEAIR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	100		100		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	100		100	
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}^{+}$	81	5	84	8	$\mathrm{M}^{2+} \rightarrow \mathrm{y}^{+}$	78	2	82	4
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	85	5	85	7	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	83	2	85	3
	NLEAIVSVIAER	$\mathrm{M}^{2+} \rightarrow \mathrm{y}^{+}$	100		100		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	100		100	
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{10}{ }^{+}$	66	2	57	7	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	76	1	78	4
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	43	2	52	6	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{4}{ }^{+}$	36	1	37	2
FLAP	TGTLAFER	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	100		100		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{4}{ }^{+}$	100		100	
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{3}{ }^{+}$	70	6	72	4	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	44	1	42	2
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	55	7	56	4	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{3}{ }^{+}$	32	0.5	32	1
	YFVGYLGER	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	100		100		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	100		100	
		$\mathrm{M}^{2+} \rightarrow \mathrm{b}_{2}{ }^{+}$	67	6	68	7	$\mathrm{M}^{2+} \rightarrow \mathrm{b}_{2}{ }^{+}$	66	1	75	13
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	69	3	71	7	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	72	1	74	5
12-LOX	LWEIIAR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	100		100		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	100		100	
		$\mathrm{M}^{2+} \rightarrow \mathrm{b}_{2}{ }^{+}$	32	2	34	6	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{4}{ }^{+}$	87	2	90	7
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	22	2	22	1	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{3}{ }^{+}$	44	1	43	2
	AVLNQFR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	100		100		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	100		100	
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{4}{ }^{+}$	47	3	40	13	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{3}{ }^{+}$	7	0.2	8	1
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{3}{ }^{+}$	6	2	8	1	$\mathrm{M}^{2+} \rightarrow \mathrm{Z4}^{+}$	6	0.2	6	0.4
15-LOX	EITEIGLQGAQDR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	100		100		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	100		100	
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	38	1	38	2	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	39	1	38	1
		$\mathrm{M}^{2+} \rightarrow \mathrm{yg}^{+}$	30	2	30	1	$\mathrm{M}^{2+} \rightarrow \mathrm{yg}^{+}$	30	1	31	1
	GFPVSLQAR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}^{++}$	100		100		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{++}$	100		100	
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	28	1	28	1	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	28	0.4	28	1
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}{ }^{+}$	18	1	18	1	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	10	0.3	10	0.3
15-LOX-2	ELLIVPGQVVDR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}^{+}$	100		100		$\mathrm{M}^{2+} \rightarrow \mathrm{y}^{+}$	100		100	
		$\mathrm{M}^{2+} \rightarrow \mathrm{b}_{5}{ }^{+}$	32	3	32	5	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	30	0.5	31	1
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	32	1	32	3	$\mathrm{M}^{2+} \rightarrow \mathrm{b}_{5}^{+}$	30	1	30	1
	VSTGEAFGAGTWDK	$\mathrm{M}^{2+} \rightarrow \mathrm{y}^{+}$	100		100		$\mathrm{M}^{2+} \rightarrow \mathrm{y}^{+}$	100		100	
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	83	4	78	9	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	74	2	78	3
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{9}{ }^{+}$	79	4	73	12	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{12}{ }^{++}$	58	2	58	4

ESM Table S8 continued.

β-Actin \& Y Actin	VAPEEHPVLLTEAPL NPK	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{5}{ }^{+}$	100		100		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{6}{ }^{+}$	100		100	
		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{16}{ }^{++}$	86	9	68	14	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{7}^{+}$	98	4	94	14
		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{8}{ }^{+}$	45	2	42	3	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{2}{ }^{+}$	81	5	89	7
	DLYANTVLSGGTTMY PGIADR	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{6}{ }^{+}$	100		100		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{6}{ }^{+}$	100		100	
		$\mathrm{M}^{3+} \rightarrow \mathrm{y}^{+}$	64	4	66	2	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{7}{ }^{+}$	50	3	49	2
		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{8}{ }^{+}$	31	2	34	3	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{8}{ }^{+}$	20	1	20	4
PPIB	IGDEDVGR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}^{+}$	100		100		$\mathrm{M}^{2+} \rightarrow \mathrm{y}^{+}$	100		100	
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	27	1	27	3	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	31	1	30	1
		$\mathrm{M}^{2+} \rightarrow \mathrm{ys}^{+}$	19	1	20	3	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	17	0.4	17	0.5
	VLEGMEVVR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}^{+}$	100		100		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{7}^{+}$	100		100	
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	41	1	43	2	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{6}{ }^{+}$	40	1	41	1
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	12	0.3	11	1	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	13	0.3	13	0.4
GAPDH	VPTANVSVVDLTCR	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{5}{ }^{+}$	100		100		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{5}{ }^{+}$	100		100	0
		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{3}{ }^{+}$	48	1	53	4	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	5	2	8	4
		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{4}{ }^{+}$	50	2	50	3	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{3}{ }^{+}$	46	2	48	2
	GALQNIIPASTGAAK	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{8}{ }^{+}$	100		100		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{9}{ }^{+}$	100		100	
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{9}{ }^{+}$	38	2	34	4	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{11}{ }^{+}$	40	2	38	2
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{11^{+}}$	19	1	16	3	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{10}{ }^{+}$	22	1	22	1
CYC1	HLVGVCYTEDEAK ${ }^{1}$	$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{6}{ }^{+}$	100		100		$\mathrm{M}^{3+} \rightarrow \mathrm{y}_{6}{ }^{+}$	100		100	
		$\mathrm{M}^{3+} \rightarrow \mathrm{y}^{+}$	82	3	81	27	$\mathrm{M}^{3+} \rightarrow \mathrm{y}^{+}$	80	3	68	42
		$\mathrm{M}^{3+} \rightarrow \mathrm{b}_{6}{ }^{+}$	58	1	136	142	$\mathrm{M}^{3+} \rightarrow \mathrm{b}_{6}{ }^{+}$	61	1	94	145
	DVCTFLR	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	100		100		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{5}{ }^{+}$	100		100	0
		$\mathrm{M}^{2+} \rightarrow \mathrm{ys}^{++}$	45	1	47	2	$\mathrm{M}^{2+} \rightarrow \mathrm{ys}^{++}$	40	2	43	2
		$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{4}{ }^{+}$	40	1	40	3	$\mathrm{M}^{2+} \rightarrow \mathrm{y}_{4}{ }^{+}$	36	1	37	1

${ }^{1}$: interference, not used for quantification

ESM Table S9 Precision: Intra- and interday variability of the targeted proteomics analysis was determined in THP-1 monocytes differentiated to macrophages ($50 \mathrm{nM} 1,25$-dihydroxyvitamin D_{3} and $1 \mathrm{ng} \mathrm{mL}^{-1}$ TGF- $\beta 1$ for 72 h , stimulated with $1 \mu \mathrm{~g} \mathrm{~m}^{-1}$ LPS for 6 h). Variability was calculated as relative standard deviation of the same sample prepared independently three times on the same day (intraday) and on three different days (interday).

protein	peptide	precision	
		intraday [\%]	interday [\%]
COX-1	DCPTPMGTK	10	24
COX-2	FDPELLFNK	6	28
5-LOX	DDGLLVWEAIR	10	21
FLAP	TGTLAFER	34	42
ACTB	VAPEEHPVLLTEAPLNPK	5	15
PPIB	IGDEDVGR	13	25
GAPDH	GALQNIIPASTGAAK	5	11
CYC1	DVCTFLR	8	21

ESM Table S10 Accuracy of the targeted proteomics method. THP-1 monocytes differentiated to macrophages (50 nM 1,25-dihydroxyvitamin D_{3} and $1 \mathrm{ng} \mathrm{mL}^{-1}$ TGF- $\beta 1$ for 72 h) were spiked with unlabeled peptides during sample preparation after tryptic digestion. The accuracy was determined as the mean $(\mathrm{n}=3)$ $\%$ of the nominal concentration (4 nM FDPELLFNK, 5 nM LWEIIAR, 20 nM EITEIGLQGAQDR, 8 nM ELLIVPGQVVDR).

protein	peptide	accuracy [\%]
COX-2	FDPELLFNK	140
12-LOX	LWEIIAR	131
15-LOX	EITEIGLQGAQDR	95
15-LOX-2	ELLIVPGQVVDR	122

3 Detailed multi-omics data of human primary macrophages and platelets

ESM Table S11 Protein levels in human platelets. Platelet-rich plasma was generated from EDTAblood after centrifugation and platelets were then isolated from the platelet-rich plasma after subsequent centrifugation. Protein levels were quantified via LC-MS/MS based targeted proteomics, shown are mean \pm SEM in $\mathrm{pg} \mathrm{mg}^{-1}$ protein from $\mathrm{n}=3$ donors.

Protein abundance levels [pg mg-1] total protein in human platelets							
donor	COX-1	COX-2	5-LOX	FLAP	12-LOX	15-LOX	15-LOX-2
A	1.2			0.7			
B	1.6	<LLOQ	<LLOQ	<LLOQ	0.6	<LLOQ	<LLOQ
C	0.5			0.4			

ESM Table S12 Investigation of the ARA cascade in primary human macrophages. (A) Oxylipin concentrations and (B) protein levels in human macrophages derived from primary blood monocytic cells. Cells were differentiated with $10 \mathrm{ng} \mathrm{mL}^{-1}$ CSF-2 (M1-like cells) or CSF-1 (M2-like cells) for 8 days. For the final 48 h , they were treated with $10 \mathrm{ng} \mathrm{mL}^{-1}$ IFN γ (M1-like cells) or IL-4 (M2-like cells) and with or without $1 \mu \mathrm{~g} \mathrm{~mL}^{-1}$ LPS for the final 6 h . For M0like cells, the adhered monocytes were left untreated for 8 days (mean \pm SEM, $n=5-6$). All data was obtained by LCMS/MS based targeted oxylipin metabolomics and proteomics. Peptides highlighted in bold were quantified using AQUA standards (Section 2).

ESM Table S13 Modulation of the ARA cascade in primary human macrophages. Effects of ARA cascade modulation on (A) oxylipin concentrations and (B) protein levels of the COX, 5-,12-, 15-LOX and 15-LOX-2 pathways in human macrophages derived from primary blood monocytic cells. Cells were differentiated with $10 \mathrm{ng} \mathrm{mL}{ }^{-1}$ CSF-2 (M1-like cells) or CSF-1 (M2-like cells) for 8 days and with $10 \mathrm{ng} \mathrm{mL}^{-1}$ IFN γ (M1-like cells) or IL-4 (M2-like cells) for the final 48 h . The cells were incubated with the different pharmaceuticals at the following concentrations for the final 7 h during additional LPS stimulation $(1 \mu \mathrm{~g} \mathrm{~mL} \text { - })^{-1}$ for the final $6 \mathrm{~h}: 1 \mu \mathrm{M}$ COX-1/2 inhibitor indomethacin, 100 nM dexamethasone, $5 \mu \mathrm{M}$ COX- 2 inhibitor celecoxib, $5 \mu \mathrm{M} 5$-LOX inhibitor PF4191834, $10 \mu \mathrm{M}$ 15-LOX inhibitor ML351 or 0.1% DMSO as control.

The concentrations of (A) i) oxylipins and (B) i) proteins were determined in each sample and (A) ii), (B) ii) calculated relative to the mean of both controls per donor as well as (A) iii), (B) iii) the overall means \pm SEM per test compound. In case the concentrations of analytes were $<$ LLOQ and \geq LOD the LOD was used and for concentrations < LOD the half LLOQ was used for relative calculation. All data was obtained by LC-MS/MS based targeted oxylipin metabolomics and proteomics.

			(A) i) Oxylipin conc [pmol mg-1 ${ }^{-1}$ protein]					(B) i) Protein levels [pmol mg^{-1} protein]						
	Donor	Incubation	$\begin{aligned} & \text { 12- } \\ & \text { HHT } \end{aligned}$	PGE ${ }_{2}$	5HETE	12HETE	15- HETE	$\underset{1}{\text { cox- }}$	$\begin{gathered} \text { COX } \\ 2 \end{gathered}$	5-LOX	FLAP	$\begin{aligned} & \text { 12- } \\ & \text { LOX } \end{aligned}$	$\begin{aligned} & \text { 15- } \\ & \text { LOX } \end{aligned}$	$\begin{aligned} & \text { 15- } \\ & \text { LOX-2 } \end{aligned}$
	A	Ctrl. 1	17	0.61	0.26	0.33	7.4	0.39	0.12	0.15	24			
		Ctrl. 2	18	0.71	0.32	0.21	5.2	0.61	0.17	0.24	41			
		Indomethacin	1.4	0.077	0.26	0.19	0.43	0.62	0.20	0.23	41	< LOD	< LOD	< LOD
		Dexamethasone	16	0.77	0.26	0.26	3.6	0.59	0.077	0.28	39			
		PF4191834	18	0.88	0.25	0.16	2.8	0.65	0.14	0.46	43			
	B	CtrI. 1	20	1.2	0.49	2.0	18	0.41	0.22	0.086	21			
		Ctrl. 2	20	1.1	0.58	1.7	17	0.48	0.27	0.11	27			
		Indomethacin	4.3	0.18	0.49	1.2	1.5	0.63	0.36	0.15	35	< LOD	< LOD	< LOD
		Dexamethasone	13	0.55	0.54	1.0	9.3	0.87	0.24	0.22	49			
		PF4191834	15	0.89	0.52	0.25	11	0.74	0.29	0.30	38			
	C	CtrI. 1	30	2.4	0.69	0.26	16	1.2	0.56	0.22	49			
		Ctrl. 2	22	1.9	0.77	0.21	12	0.94	0.41	0.27	47			
		Indomethacin	3.6	0.25	0.71	0.44	0.81	1.1	0.49	0.20	49	< LOD	< LOD	< LOD
		Dexamethasone	16	1.4	1.2	0.20	7.8	0.93	0.17	0.30	46			
		PF4191834	40	2.8	0.44	0.14	11	1.1	0.38	0.31	44			
	D	CtrI. 1	37	5.4	1.9	0.17	18	1.3	0.75	0.44	41			
		Ctrl. 2	29	4.3	1.7	0.26	18	1.1	0.58	0.35	29			
		Indomethacin	4.3	0.42	2.0	0.35	1.1	1.0	0.60	0.32	24	< LOD	< LOD	< LOD
		Dexamethasone	14	2.1	5.5	0.22	5.7	1.2	0.25	0.64	31			
		PF4191834	32	3.4	1.3	0.34	13	1.1	0.43	0.56	18			
	A	Ctrl . 1	38	2.3	0.42	10	114	2.0	0.29	0.13	4.2		17	0.26
		Ctrl. 2	38	2.0	0.47	10	110	2.2	0.31	0.12	4.6	< LOD	18	0.24
		Dexamethasone	25	2.2	0.53	12	125	2.0	0.15	0.14	3.8		18	0.31
	B	Ctrl .1	29	2.8	0.50	11	143	1.4	0.20	0.062	2.7		17	0.17
		Ctrl. 2	39	3.4	0.82	11	154	1.5	0.19	0.10	3.1	< LOD	19	0.18
		ML351	37	3.8	0.63	5.3	94	2.0	0.36	< LOD	3.5		22	0.25
	C	CtrI .1	27	2.4	1.5	16	56	0.75	0.26	0.064	3.4		0.38	0.079
		Ctrl. 2	29	2.9	1.3	19	65	0.40	0.20	0.044	2.4	< LOD	0.24	0.049
		Dexamethasone	21	1.7	1.4	14	67	0.62	0.15	0.082	3.2		0.46	0.086
	D	Ctrl .1	35	3.1	2.3	27	232	0.51	0.15	0.10	1.8		1.2	0.18
		Ctrl. 2	30	3.2	3.2	31	247	0.68	0.15	0.10	2.1	< LOD	1.0	0.15
		Celecoxib	13	1.5	4.0	29	296	0.55	0.12	0.080	1.8		0.89	0.11
	E	Ctrl 1	41	1.9	3.0	41	435	0.91	0.15	0.075	1.0		4.5	0.15
		Ctrl. 2	35	2.2	2.0	31	344	0.78	0.13	0.054	0.6	< 1 OD	3.3	0.14
		Dexamethasone	23	0.91	3.5	50	516	1.3	0.10	0.12	1.0	LOD	9.6	0.23
		ML351	51	3.9	1.7	27	233	0.81	0.19	0.032	0.8		4.4	0.13
	F	Ctrl 1	17	1.2	1.9	21	368	0.72	0.10	0.10	2.7		2.0	0.48
		Ctrl. 2	14	0.71	2.4	19	295	0.75	0.11	0.13	3.0		2.3	0.52
		Indomethacin	0.84	< LOD	2.5	19	291	0.83	0.070	0.086	2.7	< LOD	2.3	0.40
		Dexamethasone	8.6	0.51	2.8	26	389	0.75	0.032	0.084	2.6		2.7	0.53
		ML351	16	0.95	2.1	8.7	202	0.79	0.070	< LOD	2.7		2.0	0.29
	G	Ctrl . 1	45	2.7	2.3	27	346	0.75	0.24	0.056	1.1		4.0	0.16
		Ctrl. 2	41	2.5	2.0	31	362	0.85	0.28	0.043	0.9		4.4	0.17
		Indomethacin	3.8	0.086	3.0	39	441	1.4	0.37	0.10	3.3	< LOD	5.9	0.21
		Dexamethasone	53	3.5	2.9	45	444	1.1	0.24	0.10	1.5	<LOD	5.2	0.14
		Celecoxib	31	2.8	3.9	59	493	0.88	0.18	0.080	2.0		3.0	0.10
		ML351	100	7.9	1.3	17	200	1.3	0.48	< LOD	2.2		4.5	0.12
	H	CtrI .1	55	4.3	1.6	23	309	1.3	0.36	0.081	2.2		6.8	0.40
		Ctrl. 2	53	4.5	1.8	23	356	1.3	0.38	0.082	2.9	< LOD	4.2	0.34
		Indomethacin	5.9	1.0	2.1	21	290	0.94	0.20	0.085	2.5		2.7	0.34
	I	Ctrl. ${ }^{1}$	26	0.062	1.5	13	136	1.3	0.39	0.12	2.0	<	3.4	0.21
		Celecoxib ${ }^{1}$	15	0.052	2.1	18	174	1.2	0.37	0.11	1.9	<LOD	4.5	0.20

${ }^{1}$: only one control per donor

4 MRM 3 analysis

ESM Fig. S1 Optimization of QTRAP fill time for MS ${ }^{\mathbf{3}}$ experiments and evaluation of linear range in $\mathbf{M S}^{3}$. (A) Longer fixed fill times (FFT) result in increased signal intensity and thus, improved signal-to noise ratios. Shown are 25 nM standards of (A)i) DDGLLVWEAIR (5-LOX) and (A)ii) FDPELLFNK (COX-2). (B) The calibration range in MS^{3} is limited due to overfilling of the ion trap at higher concentrations resulting in poor peak shape, shown exemplarily for the COX-2 peptide FDPELLFNK.

ESM Fig. S2 Improving MRM ${ }^{3}$ analysis. Summing multiple MS 3 fragments improves sensitivity for analysis and thus enables lower LLOQs in MRM ${ }^{3}$ analysis. Shown is a standard of FDPELLFNK (COX-2; 84 pM) measured in MRM ${ }^{3}$ mode. The signal intensities of (A), (B) individually isolated MS^{3} fragments is lower compared to (C) the sum of $10 \mathrm{MS}^{3}$ fragments.

ESM Fig. S3 Comparison of MRM and MRM ${ }^{3}$ sensitivities. Comparison of (A) MRM and (B) MRM ${ }^{3}$ modes regarding i) limits of detection (LOD) and ii) lower limits of quantification (LLOQ) for peptides of COX-2 (FDPELLFNK), 5-LOX (DDGLLVWEAIR), 15-LOX (EITEIGLQGAQDR) and 15-LOX-2 (ELLIVPGQVVDR). LOD was set to $\mathrm{S} / \mathrm{N} \geq 3$ and LLOQ to $\mathrm{S} / \mathrm{N} \geq 5$ and accuracies within $\pm 20 \%$.

5 Cell viability assays

ESM Fig. S4 Resazurin assay. Cell viability was determined by resazurin assay in human primary macrophages. Cells were differentiated with (A) $10 \mathrm{ng} \mathrm{mL}^{-1} \mathrm{CSF}-2$ (M1-like cells) or (B) CSF-1 (M2-like cells) for 8 days and with $10 \mathrm{ng} \mathrm{mL}^{-1}$ IFN γ (M1-like cells) or IL-4 (M2-like cells) for the final 48 h . The cells were incubated with the different test compounds at the indicated concentrations for the final 7 h during additional $1 \mu \mathrm{~g} \mathrm{~mL}^{-1}$ LPS stimulation for the final 6 h . DMSO served as vehicle control and SDS as positive control. Dehydrogenase activity was measured as resorufin formation by fluorometric readout at 590 nm after excitation at 560 nm (13). Shown are mean \pm SD for $\mathrm{n}=6-12$ technical replicates from a pool of 5 donors.

ESM Fig. S5 Lactate dehydrogenase assay. Cell viability was determined by lactate dehydrogenase assay in human primary macrophages. Cells were differentiated with (A) $10 \mathrm{ng} \mathrm{mL}^{-1}$ CSF-2 (M1-like cells) or (B) CSF-1 (M2-like cells) for 8 days and with $10 \mathrm{ng} \mathrm{mL}^{-1} \mathrm{IFN} \gamma$ (M1-like cells) or IL-4 (M2-like cells) for the final 48 h . The cells were incubated with the different test compounds at the indicated concentrations for the final 7 h during additional $1 \mu \mathrm{~g} \mathrm{~mL}^{-1}$ LPS stimulation for the final $6 \mathrm{~h} .0 .2 \%$ Triton- X served as positive control and DMSO as vehicle control. Dehydrogenase activity was measured via the absorbance decrease at 340 nm for 45 minutes during the NADH dependent reduction of pyruvate to lactate. LDH leakage was estimated by comparing LDH activities in culture medium and lysed cells. Shown are mean \pm SD for $\mathrm{n}=3-4$ technical replicates from a pool of 3 donors.

6 References

1. Koch E, Mainka M, Dalle C, Ostermann AI, Rund KM, Kutzner L, et al. Stability of oxylipins during plasma generation and long-term storage. Talanta. 2020;217:121074.
2. Rund KM, Ostermann AI, Kutzner L, Galano JM, Oger C, Vigor C, et al. Development of an LC-ESI(-)-MS/MS method for the simultaneous quantification of 35 isoprostanes and isofurans derived from the major n3- and n6-PUFAs. Anal Chim Acta. 2018;1037:63-74.
3. Kutzner L, Rund KM, Ostermann AI, Hartung NM, Galano JM, Balas L, et al. Development of an Optimized LC-MS Method for the Detection of Specialized Pro-Resolving Mediators in Biological Samples. Front Pharmacol. 2019;10.
4. Hartung NM, Mainka M, Kampschulte N, Ostermann AI, Schebb NH. A strategy for validating concentrations of oxylipin standards for external calibration. Prostaglandins Other Lipid Mediat. 2019;141:22-4.
5. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36(suppl_2):W5-W9.
6. Schaeffer M, Gateau A, Teixeira D, Michel PA, Zahn-Zabal M, Lane L. The neXtProt peptide uniqueness checker: a tool for the proteomics community. Bioinformatics. 2017;33(21):3471-2.
7. Gasteiger E, Hoogland C, Gattiker A, Duvaud Se, Wilkins MR, Appel RD, et al.

Protein Identification and Analysis Tools on the ExPASy Server. In: Walker JM, editor. The Proteomics Protocols Handbook. Totowa, NJ: Humana Press; 2005. p. 571-607.
8. Fannes T, Vandermarliere E, Schietgat L, Degroeve S, Martens L, Ramon J.

Predicting Tryptic Cleavage from Proteomics Data Using Decision Tree Ensembles. J Proteome Res. 2013;12(5):2253-9.
9. The Unitprot Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2018;47(D1):D506-D15.
10. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2015;43(D1):D512-D20.
11. Krokhin OV, Spicer V. Peptide Retention Standards and Hydrophobicity Indexes in Reversed-Phase High-Performance Liquid Chromatography of Peptides. Anal Chem. 2009;81(22):9522-30.
12. Hartung NM, Ostermann AI, Immenschuh S, Schebb NH. Combined Targeted Proteomics and Oxylipin Metabolomics for Monitoring of the COX-2 Pathway. PROTEOMICS. 2021;21(3-4):1900058.
13. O'Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem.
2000;267(17):5421-6.

precursor PUFA	PUFA class	analye		Intemal standard		$\underset{\substack{\text { Loo" } \\ \text { (nmm }}}{ }$		vooa*	Reterence
	epaxyPVFA			${ }^{2} \mathrm{H}_{4}-12(13)$-EpOME ${ }^{2} \mathrm{H}_{4}-12(13)$-EpOME	边 2399	${ }_{0} 025$		500	Koty
	vic almaxayPVFA				${ }_{1}^{1634}$	${ }^{025}$	0.50	1000	curomenpear
	mydoxpevea					$\begin{array}{\|c\|c\|} \hline 0.14 \\ 0.038 \\ 0.025 \\ 0.01 \\ 0.099 \\ \hline \end{array}$	0.50 0.35 0.076 0.05 0.25 0.18	$\begin{aligned} & 10000 \\ & \hline 348 \\ & \hline 380 \\ & 100 \\ & 500 \\ & 177 \end{aligned}$	Koch (2020) Talanta
	ox.evef				$\begin{array}{\|l\|} \hline 20.90 \\ 2028 \\ 20.9 \\ \hline \end{array}$	${ }_{0}^{0.25}$	${ }_{0}^{0.5}$	(500	Koch (2020) Talanta Koch (2020) Talanta Koch (2020) Talanta
	emexpeva	9(10)-EpOME trans-9(10)-EpOME 12(13)-EpOME trans-12(13)-EpOME ${ }^{2} \mathrm{H}_{4}-12(13)-E p O M E$		${ }^{2} \mathrm{H}_{4}-12(13)-\mathrm{EDOME}_{\mathrm{C}}$ ${ }^{2} \mathrm{H}_{4}-12(13)$-EpOME ${ }^{2} \mathrm{H}_{4}-12(13)$-EpOME ${ }^{2} \mathrm{H}_{4}-12(13)$-EpOME internal standard	22.50 2265 2229 2244 22.19		relative quantification based on 9(10)-EpOME 0.037 relative quantification based on 12(13)-EpOME	$\begin{aligned} & \hline 405 \\ & \hline 185 \end{aligned}$	Koch (2020) Talanta Rund (2019) POLM Koch (2020) Talant Rund (2019) POLM Koch (2020) Talanta
	vicaldromevera				$\begin{array}{\|l\|} \hline 14.94 \\ 1.46 \\ 1.484 \\ \hline \end{array}$		${ }_{\substack{0.01 \\ 0.029}}$	${ }_{145}^{250}$	
	maso				9.70 8.80 8.35 1723	$\begin{array}{\|l\|} \hline 0.05 \\ 0.05 \\ 0.025 \\ \hline 0 . \end{array}$	0.1 0.1 0.05 reative uauarfifiation based on 12113)EEOME	$\begin{aligned} & \text { 250 } \\ & \text { 250 } \\ & 250 \end{aligned}$	
	introxpeva				(1888	${ }^{0.1}$	- $\begin{aligned} & 0.25 \\ & 0.5\end{aligned}$	(500	Koch (2020) Talanta
	ox.ever	$\begin{aligned} & \text { 9-0xo-OTrE } \\ & \text { 13-0x0-OTrE } \end{aligned}$			${ }_{\substack{18,3 \\ 182}}$	${ }_{0}^{0.1}$	$\begin{aligned} & 0.25 \\ & 0.1 \\ & 0 . \end{aligned}$	$\begin{aligned} & 500 \\ & 100 \end{aligned}$	$\begin{aligned} & \text { Koch (2020) Talanta } \\ & \text { Koch (2020) Talanta } \\ & \hline \end{aligned}$
	epaxyPuFA	9(10)-EpODE 12(13)-EpODE 15(16)-EpODE trans -9(10)-EpODE trans-12(13)-EpODE trans-15(16)-EpODE		${ }^{2} \mathrm{H}_{4}-12(13)$-EpOME ${ }^{2} \mathrm{H}_{4}-12(13)$-EpOME	20.15 20.5 19.9 20.30 20.30 20.7 20.12	$\begin{array}{\|l\|l\|} \hline 0.058 \\ 0.17 \\ 0.092 \\ \hline 0 . \end{array}$		$\begin{aligned} & 582 \\ & 323 \\ & 324 \\ & 924 \end{aligned}$	Koch (2020) Talanta Koch (2020) Talanta Koch (2020) Talanta Rund (2019) POLM Rund (2019) POLM Rund (2019) POLM
	Wicalmaxyevera	9.10-DiHODE ${ }^{12,13-\text {-iHOOD }}$ 15,16-DiHOD			$\begin{aligned} & 12.82 \\ & 1290 \\ & 1276 \\ & 10 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.01 \\ 0.11 \\ 0.18 \\ \hline \end{array}$	$\begin{aligned} & 0.025 \\ & 0.25 \\ & 0.45 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 100 \\ & 250 \\ & \text { 250 } \\ & \hline \end{aligned}$	Koch (2020) Talanta Koch (2020) Talanta Koch (2020) Talanta
	miso	9,10,11-TriHODE 9,10,13-TriHODE 9,12,13-TriHODE			$\begin{array}{\|l\|} \hline 8,34 \\ 7755 \\ 7,35 \end{array}$	$\begin{array}{\|l\|l} \hline 0.025 \\ 0.75 \\ 0.05 \\ \hline \end{array}$	$\begin{gathered} 0.05 \\ \hline 0.1 \\ 0.1 \\ \hline \end{gathered}$	$\begin{aligned} & 250 \\ & 500 \\ & 250 \end{aligned}$	Koch (2020) Talanta Koch (2020) Talanta Koch (2020) Talanta
dihomo-gamma-Linolenic Acid (DGLA; 20:3n-6)	midatapuefa	13, 12 H0TE	$29301930-90-10.23-8$	Hectres	1759	1	25	500	Kochtere20 Tratala
	mpdoypupa	$\begin{array}{\|l\|} \hline \text { 8-HETrE } \\ \text { 12-HETrE } \\ \text { 15-HETrE } \end{array}$		$\begin{aligned} & \mathrm{H}_{8} 5.5 \mathrm{HETE} \\ & \mathrm{H}_{6}-5 \cdot \mathrm{HETE} \\ & \mathrm{H}_{\mathrm{H}} 5-\mathrm{HETETE} \end{aligned}$	21.85 22020 2147	$\begin{array}{\|l\|} \hline 0.25 \\ \hline 0.1 \\ \hline 0.05 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.5 \\ & 0.25 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & \text { Koch (2020) Talanta } \\ & \text { Koch (2020) Talanta } \\ & \text { Koch (2020) Talanta } \\ & \hline \end{aligned}$
	mutherdoxpevea	LB,	3372 1952-80 -10.21-8		1599	0.1	025	500	Kach
	טpexpevea		$32122212.85-10-19+4$		2347	0.025	0.05	100	Kenh 2 2020 T Tenata
	prosanois				12.27 9.36 91.68 9.20 9.81 10.81 9.98 9.96 8.96 9.48 7.37	0.05 0.05 0.25 0.05 0.17 0.25 0.50 0.025 0.40		750 250 100 100 250 698 100 100 1000 250 250 1608	
	bsomsames	8-iso-PGE $15-\mathrm{F}_{12}$ - $\mathrm{IsoP}\left(8 \text {-iso- } \mathrm{PGF}_{10}\right)^{4}$		${ }^{2}{ }^{2} H_{4}+P \text { PGE } E_{2}{ }_{20}$		${ }_{0}^{0.25}$	$\stackrel{0.50}{10}$	(500	
$\overline{\text { Mead acid (20:3:-9) }}$	midaterevea	SHETIE	$321215.5 .0 .00-10-17-9$	Th, 5 SHETE	23.56	001	0.025	250	Koch(2020) Tramat
	motroeoxyPuFA			${ }^{2} \mathrm{H}_{8}-5-\mathrm{HETE}$ ${ }^{2} \mathrm{H}_{8}$-12-HETE ${ }^{2} \mathrm{H}_{6}-15$-HETE	$\begin{array}{\|l\|} \hline 2213 \\ 2138 \\ 2063 \\ 2063 \end{array}$		relative quantification based on 5-HETE relative quantification based on 12 -HETE relative quantification based on $15-\mathrm{HETE}$		Meckelmann (2017) POLM Meckelmann (2017) POLM Meckelmann (2017) POLM
	WxPUuFA			${ }^{2} \mathrm{H}_{8}-5$-HETE ${ }^{2} \mathrm{H}_{5}-12-\mathrm{HETE}$ ${ }^{2} \mathrm{H}_{8}-5$-HETE ${ }^{2} \mathrm{H}_{5}-12-\mathrm{HETE}$ ${ }^{2} \mathrm{H}_{8}-12-\mathrm{HETE}$ ${ }^{2} \mathrm{H}_{8}-15-\mathrm{HETE}$ ${ }^{2} \mathrm{H}_{8}-15-\mathrm{HETE}$ ${ }^{2} \mathrm{H}_{5}-15-\mathrm{HETE}$ ${ }^{2} \mathrm{H}_{5}-15$-HETE ${ }^{2} \mathrm{H}_{5}-15$-HETE ${ }^{2} \mathrm{H}_{6}-20-\mathrm{HETE}$ ${ }^{2} \mathrm{H}_{4}-9,10$-DiHOME ${ }^{2} \mathrm{H}_{11}-11,12$-DiHETrE internal standard internal standard internal standard internal standard		0.018 0.094 0.07 0.022 0.1 0.11 0.1 0.1 0.1 0.1 1 0.25 0.025 0.025 0.25	0.035 0.03 0.4 0.044 0.25 0.22 0.25 0.25 0.25 2.5 0.5 0.05 0.5	350 468 265 219 210 500 220 500 500 500 500 500 500 250 500 500	Koch (2020) Talanta Koch (2020) Talanta Koch (2020) Talanta Koch (2020) Talanta Koch (2020) Talanta
	muthroweyevea	5(S),12(S)-DiHETE 5(S),15(S)-DiHETE LTB_{4} 6-trans-LTB ${ }_{4}$ 6-trans-12-epi-LTB $5(S), 6(R)$-DiHETE (ARA) 5(S),6(S)-DiHETE (ARA) $20-\mathrm{OH}-\mathrm{LTB}_{4}$ $20-\mathrm{COOH}-\mathrm{LTB}_{4}$ $18-\mathrm{COOH}$-dinor-LTB ${ }_{4}$ 12-oxo-LTB 4 $5(S), 6(R), 15(S)$-TriHETE (LxA4) $5(S), 6(S), 15(S)$-TriHETE (6(S)-LxA4) 5(S),6(R),15(R)-TriHETE (15(R)-LxA4) 5(S) , 14(R), 15(S)-TriHEPE (LxB $\left.{ }_{4}\right)$ ${ }^{2} \mathrm{H}_{4}-\mathrm{LTB}_{4}$ ${ }^{2} \mathrm{H}_{5}-5(\mathrm{~S}), 6(R), 15(\mathrm{~S})-$ TriHETE (LXA $\left.{ }_{4}\right)$				0.025 0.05 0.51 0.05 0.1 0.1 0.020 0.02 0.022 0.025 0.066 0.75 0.1 0.1 0.75 0.50 0.50		500 500 253 500 250 500 390 223 500 330 500 500 500 1000 1000	Koch (2020) Talanta current paper current paper current paper Koch (2020) Talanta Koch (2020) Talanta
	ow.evfa				22.87 21.6 20.88 2277 20	$\begin{array}{\|l\|l\|} \hline 0.51 \\ 0.41 \\ 0.05 \end{array}$	$\begin{aligned} & 0.75 \\ & 1.0 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 500 \\ & \hline 103 \\ & 250 \\ & 250 \end{aligned}$	Koch (2020) Talanta Koch (2020) Talanta Koch (2020) Talanta Koch (2020) Talant
	emexpeva	5(6)-EpETrE 8(9)-EpETrE 11(12)-EpETrE 14(15)-EpETrE trans-5(6)-EpETrE trans -8(9)-EpETrE trans-11(12)-EpETrE trans-14(15)-EpETrE ${ }^{2} \mathrm{H}_{11}-8(9)$-EpETrE ${ }^{2} \mathrm{H}_{11}-11,12$-DiHETrE ${ }^{2} \mathrm{H}_{11}-14(15)$-EpETrE ${ }^{2} \mathrm{H}_{11}-14(15)$-EpETrE		${ }^{2} \mathrm{H}_{11}-14(15)-E p E T r E$ ${ }^{2} \mathrm{H}_{11}-8(9)$-EpETrE ${ }^{2} \mathrm{H}_{11}-8(9)-E p E T r E$ ${ }^{2} \mathrm{H}_{11}-14(15)$-EpETrE ${ }^{2} \mathrm{H}_{11}-14(15)$-EpETrE ${ }^{2} \mathrm{H}_{11}-8(9)$-EpETrE ${ }^{2} \mathrm{H}_{11}-8(9)$-EpETrE ${ }^{2} \mathrm{H}_{11}-14(15)$-EpETrE internal standard internal standard internal standard		$\begin{gathered} 0.25 \\ 0.05 \\ 0.05 \\ 0.1 \end{gathered}$	relative quantification based on $8(9)$-EpETrE 0.5 0.1 0.25 relative quantification based on $8(9)$-EpETrE relative quantification based on $8(9)-E p E T r E$ relative quantification based on $11(12)-E p E T r E$ relative quantification based on $14(15)-E p E T r E$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	
	wothroxpevea	5,6-DiHETrE 8,9-DiHETrE 11,12-DiHETrE 14,15-DiHETrE ${ }^{2} \mathrm{H}_{11}-11,12$-DiHETrE		$\mathrm{H}_{11}-11 \mathrm{~T}^{2}-\mathrm{DHETrE}$ ${ }^{2} \mathrm{H}_{11}-11,12$-DiHETrE ${ }^{2} \mathrm{H}_{11}-11,12$-DiHETrE ${ }^{2} \mathrm{H}_{11}-11,12$-DiHETrE internal standard		$\begin{aligned} & 0.05 \\ & 0.034 \\ & 0.032 \\ & 0.031 \\ & 0.01 \end{aligned}$	0.1 0.068 0.064 0.025	$\begin{aligned} & \hline 500 \\ & 7180 \\ & 180 \\ & 100 \end{aligned}$	Koch (2020) Talanta
		PGB_{2} ${ }^{2} \mathrm{H}_{4}-\mathrm{PGB}$ PGD 2 $15(R)-\mathrm{PGD}_{2}$ $\triangle 12-\mathrm{PGD}_{2}$ 13,14-ditydro-15-keto PGD 13,14-dihydro-15-keto-tetranor-PGD ${ }^{2} \mathrm{H}_{4}-\mathrm{PGD}_{2}$ ${ }^{2} \mathrm{H}_{3}-\mathrm{PGD}_{2}$ PGE 2 15(R)-PGE		${ }^{2} \mathrm{H}_{4}-\mathrm{PGB}_{2}$ internal standard ${ }^{2} \mathrm{H}_{4}-\mathrm{PGD}_{2}$ theoretically ${ }^{2} \mathrm{H}_{4}-\mathrm{PGD}_{2}{ }^{51}$ theoretically ${ }^{2} \mathrm{H}_{4}-\mathrm{PGD}_{2}{ }^{5}$ ${ }^{2} \mathrm{H}_{4}-13,14$-dihydro-15-keto PGE_{2} ${ }^{2} \mathrm{H}_{4}-13,14$-dihydro-15-keto PGE_{2} internal standard internal standard ${ }^{2} \mathrm{H}_{4}-\mathrm{PGE}_{2}$ theoretically ${ }^{2} \mathrm{H}_{4}-\mathrm{PGE}_{2}{ }^{5)}$		$\begin{aligned} & 0.025 \\ & 0.75 \\ & \\ & 0.25 \\ & 0.04 \\ & 0.25 \end{aligned}$		$\begin{aligned} & 500 \\ & 750 \\ & \\ & 1000 \\ & 2070 \\ & 750 \end{aligned}$	Koch (2020) Talanta Koch (2020) Talanta current paper current paper current paper current paper current paper current paper Koch (2020) Talanta current paper current paper

[^0]: Nils Helge Schebb
 nils@schebb-web.de
 1 Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany

[^1]: The unlabeled and corresponding heavy labeled peptides from one protein were measured together in one time period covering each retention time (RT). RT are shown as mean \pm SD, set of $n=19$ calibrators. Shown are Q1 m/z and collisionally activated dissociation fragments (Q3) as well as selected MS ${ }^{3}$ fragments together with their respective collision (CE) and excitation energies (AF2). The linear trap (LIT) excitation time was set to 25 ms (standard setting) with fixed fill times of 250 ms (maximum) for all peptides (TGTLAFER $=100 \mathrm{~ms}$, IS peptides, 25 ms) at a scan rate of $10000 \mathrm{Da} / \mathrm{s}$. The MS^{3} fragments were isolated from the MS^{3} spectra with an isolation window of $\pm 0.5 \mathrm{Da}$. The ratio between the sum of (A) $10 \mathrm{MS}^{3}$ fragments of the unlabeled peptide and (B) $5 \mathrm{MS}^{3}$ fragments of the heavy labeled peptide is used for quantification. The concentrations of the IS are shown in (B). The linear calibration range and the limits of detection (LOD), lower limits of quantification (LLOQ), and LOD of the peptides and enzymes on column are shown for (A) unlabeled peptides. The accuracy of the calibrators was within a range of $\pm 15 \%$ ($\pm 20 \%$ for LLOQ). Additionally, peptides of four housekeeping proteins (GAPDH, PPIB, β - $/ \gamma$-actin, CYC1) were measured in MRM mode as separate periods with set dwell times of 20 ms and the parameters specified in ESM Table S7
 *details are specified in ESM Table S7

